LASSO算法

news2025/1/17 6:16:21

LASSO (Least Absolute Shrinkage and Selection Operator) 是一种回归分析的方法,它能够同时进行变量选择和正则化,以增强预测准确性和模型的解释性。LASSO通过在损失函数中加入一个L1惩罚项来实现这一点。该惩罚项对系数的绝对值进行约束。

基本概念

在一个线性回归模型中,我们通常寻找权重向量 x x x,使得 ∥ A x − b ∥ 2 2 \|Ax - b\|_2^2 Axb22 (二范数平方,即平方误差) 尽可能小,其中 A A A 是特征矩阵, b b b 是观察值向量。在LASSO回归中,我们求解的优化问题变为:

min ⁡ x { ∥ A x − b ∥ 2 2 + λ ∥ x ∥ 1 } \min_x \left\{ \|Ax - b\|_2^2 + \lambda\|x\|_1 \right\} xmin{Axb22+λx1}

这里 ∥ x ∥ 1 \|x\|_1 x1 表示 x x x 的L1范数(俗称为曼哈顿距离,即系数的绝对值之和), λ \lambda λ 是正则化系数,它决定了添加到模型中的惩罚的严重程度。

LASSO算法的关键特点是,在参数 λ \lambda λ 足够大时,一些系数可以被缩减为零,即模型可以排除一些特征对输出的影响。这可以解释为模型自动进行特征选择。

示例

以下是一个简单的例子和用MATLAB实现的过程:

首先创建一些合成数据,如用户之前的输入所示。我们使用 randn 函数生成正态分布的随机数,创建了一个100x10的矩阵 A A A 作为特征矩阵,以及一个有两个非零项的系数向量 x x x。然后我们计算观察值向量 b b b,并添加一些噪声。

使用MATLAB内置的 lasso 函数,我们可以拟合一个LASSO模型。lasso 函数还允许我们进行交叉验证(通过参数 'CV', 10)来选择合适的 λ \lambda λlassoPlot 函数用于可视化交叉验证结果。最后,我们选取最佳的系数向量,并且对选取的系数再进行一次普通最小二乘回归,即所谓的"去偏置"步骤。

MATLAB代码

这是用MATLAB实现的步骤展示:

% 创建特征矩阵和观察值
A = randn(100,10);
x = [0; 0; 1; 0; 0; 0; -1; 0; 0; 0];
b = A*x + 2*randn(100,1);

% L2-正则化(最小二乘)
xL2 = pinv(A)*b;

% LASSO回归
[XL1, FitInfo] = lasso(A, b, 'CV', 10);

% LASSO交叉验证结果可视化
lassoPlot(XL1, FitInfo, 'PlotType', 'CV');

% 选择1标准误差规则下的系数
xL1 = XL1(:, FitInfo.Index1SE);

% 去偏置
xL1DeBiased = pinv(A(:, abs(xL1) > 0)) * b;

在这个例子中,最后的步骤是进行去偏置(De-Biasing)。由于LASSO倾向于收缩系数,为了获得无偏的预测,通常会在LASSO选择的特征上运行一个没有正则化的线性回归。通过选择那些在LASSO模型下非零的系数作为特征,我们可以再次使用普通的最小二乘估计(也就是 pinv(A(:, abs(xL1) > 0)) * b)来获得去偏的系数估计 xL1DeBiased

运行结果

在这里插入图片描述

相关博文

理解并实现OpenCV中的图像平滑技术

OpenCV中的边缘检测技术及实现

OpenCV识别人脸案例实战

入门OpenCV:图像阈值处理

我的图书

下面两本书欢迎大家参考学习。

OpenCV轻松入门

李立宗,OpenCV轻松入门,电子工业出版社,2023
本书基于面向 Python 的 OpenCV(OpenCV for Python),介绍了图像处理的方方面面。本书以 OpenCV 官方文档的知识脉络为主线,并对细节进行补充和说明。书中不仅介绍了 OpenCV 函数的使用方法,还介绍了函数实现的算法原理。

在介绍 OpenCV 函数的使用方法时,提供了大量的程序示例,并以循序渐进的方式展开。首先,直观地展示函数在易于观察的小数组上的使用方法、处理过程、运行结果,方便读者更深入地理解函数的原理、使用方法、运行机制、处理结果。在此基础上,进一步介绍如何更好地使用函数处理图像。在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的实例来说明问题,避免使用过多复杂抽象的公式。

本书适合计算机视觉领域的初学者阅读,包括在校学生、教师、专业技术人员、图像处理爱好者。
本书第1版出版后,深受广大读者朋友的喜爱,被很多高校选为教材,目前已经累计重印9次。为了更好地方便大家学习,对本书进行了修订。
在这里插入图片描述

计算机视觉40例

李立宗,计算机视觉40例,电子工业出版社,2022
近年来,我深耕计算机视觉领域的课程研发工作,在该领域尤其是OpenCV-Python方面积累了一点儿经验。因此,我经常会收到该领域相关知识点的咨询,内容涵盖图像处理的基础知识、OpenCV工具的使用、深度学习的具体应用等多个方面。为了更好地把所积累的知识以图文的形式分享给大家,我将该领域内的知识点进行了系统的整理,编写了本书。希望本书的内容能够对大家在计算机视觉方向的学习有所帮助。
本书以OpenCV-Python(the Python API for OpenCV)为工具,以案例为载体,系统介绍了计算机视觉从入门到深度学习的相关知识点。
本书从计算机视觉基础、经典案例、机器学习、深度学习、人脸识别应用等五个方面对计算机视觉的相关知识点做了全面、系统、深入的介绍。书中共介绍了40余个经典的计算机视觉案例,其中既有字符识别、信息加密、指纹识别、车牌识别、次品检测等计算机视觉的经典案例,也包含图像分类、目标检测、语义分割、实例分割、风格迁移、姿势识别等基于深度学习的计算机视觉案例,还包括表情识别、驾驶员疲劳监测、易容术、识别年龄和性别等针对人脸的应用案例。
在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的示例来说明问题,避免使用复杂抽象的公式来介绍。
本书适合计算机视觉领域的初学者阅读,适于在校学生、教师、专业技术人员、图像处理爱好者使用。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1475934.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

前后端延迟怎么解决

当今互联网应用的发展越来越迅猛,用户对于网站或应用的性能要求也越来越高。其中一个重要方面就是前后端延迟的解决,也就是减少前端与后端之间的通信时间延迟,提高用户体验。本文将详细介绍如何解决前后端延迟的问题。 网络延迟 数据在网络…

springboot项目中使用mybatis作为数据查询框架,如何实现查询sql的日志打印输出?

在Spring Boot项目中使用MyBatis作为数据查询框架时,可以通过配置日志记录器来实现SQL查询的日志打印输出。MyBatis支持多种日志框架,如SLF4J、Log4j2等。这里介绍几种常见的配置方法: 1. 使用application.properties或application.yml配置 …

如何开通微信小程序商城

微信小程序店铺是一种新型的线上商城,可以帮助商家快速搭建自己的线上销售平台,吸引更多的用户进行购买。作为小程序服务商,我们可以帮助商家开通微信小程序店铺,提升他们的线上销售业绩。 1. 进入采云小程序。进入采云小程序首页…

skiplist(高阶数据结构)

目录 一、概念 二、实现 三、对比 一、概念 skiplist是由William Pugh发明的,最早出现于他在1990年发表的论文《Skip Lists: A Probabilistic Alternative to Balanced Trees》 skiplist本质上是一种查找结构,用于解决算法中的查找问题,…

ntp时钟服务安装- 局域网节点时间同步

场景: 一般部署大数据相关应用服务,各个节点之间需要时间同步;内网情况下,很可能各节点之前时间可能不一致,或者过一段时间后 又不一致了 ntp 时钟服务器: 可用于内网各个节点之前得时间同步,安…

C#理论 —— 基础语法、数据类型、变量、常量、运算符、三大结构

文章目录 1. 基础语法1.1 标识符命名规则1.2 C# 关键字1.3 C#注释 2. 数据类型2.1 值类型(Value types)2.2 引用类型(Reference types)2.2.1 对象(Object)类型3.2.2 动态(Dynamic)类…

ubuntu常见配置

ubuntu各个版本的安装过程大差小不差,可以参考,ubuntu20.04 其它版本换一下镜像版本即可 安装之后需要配置基本的环境,我的话大概就以下内容,后续可能有所删改 sudo apt-get update sudo apt-get install gcc sudo apt-get inst…

【踩坑】PyTorch中指定GPU不生效和GPU编号不一致问题

转载请注明出处:小锋学长生活大爆炸[xfxuezhang.cn] 指定GPU不生效问题 解释:就是使用os.environ["CUDA_VISIBLE_DEVICES"] "1"后,后面使用起来仍然是cuda0. 解决:在最开头就使用 import os os.environ[&…

【MySQL | 第一篇】undo log、redo log、bin log三者之间的区分?

undo log、redo log、bin log三者之间的区分? 从 产生的时间点、日志内容、用途 三方面展开论述即可 1.undo log——撤销日志 时间点:事务开始之前产生,根据当前版本的数据生成一个undo log,也保存在事务开始之前 作用&#xf…

springboot+vue网站开发-渲染前端列表页面-缩略图信息

springbootvue网站开发-渲染前端列表页面-缩略图信息!内容比较多。这是第一篇,先给大家展示的是,基础的代码封装,vue前端网站模块的代码展示。 我们使用到了pinia-存储我们请求过来的数据,它是一个状态管理&#xff0c…

非线性优化-高斯牛顿法

在SLAM领域,后端多采用基于非线性优化的方法,来优化位姿和地图点,其中高斯牛顿法的使用频率很高。 求解高斯牛顿法的核心公式: 其中 f 是误差函数,J是误差关于待优化变量的雅可比矩阵。 其中H为海森矩阵&#xff08…

RRT算法学习及MATLAB演示

文章目录 1 前言2 算法简介3 MATLAB实现3.1 定义地图3.2 绘制地图3.3 定义参数3.4 绘制起点和终点3.5 RRT算法3.5.1 代码3.5.2 效果3.5.3 代码解读 4 参考5 完整代码 1 前言 RRT(Rapid Random Tree)算法,即快速随机树算法,是LaVa…

C语言第三十二弹---自定义类型:联合和枚举

✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】 目录 1、联合体 1.1、联合体类型的声明 1.2、联合体的特点 1.3、相同成员的结构体和联合体对比 1.4、联合体大小的计算 1.5、联合的⼀个练习 2、枚举类型 …

176基于matlab的自适应滤波法预测

基于matlab的自适应滤波法预测,自适应滤波预测实质上是一种加权滑动平均预测,通过迭代得到最佳权值,并给出了相对误差图和预测效果图,程序已调通,可直接运行。 176matlab自适应滤波法预测 时间序列预测 (xiaohongshu.c…

51单片机(6)-----直流电机的介绍与使用(通过独立按键控制电机的运行)

前言:感谢您的关注哦,我会持续更新编程相关知识,愿您在这里有所收获。如果有任何问题,欢迎沟通交流!期待与您在学习编程的道路上共同进步。 目录 一. 直流电机模块介绍 1.直流电机介绍 2.电机参数 二. 程序设计…

java线程池原理源码解析,程序员如何技术划水

前言 面试大概九十分钟,问的东西很全面,需要做充足准备,就是除了概念以外问的有点懵逼了。回来之后把这些题目做了一个分类并整理出答案(强迫症的我~狂补知识)分为MySQLJavaRedis算法网络Linux等六类,接下…

2024-02-28(Kafka,Oozie,Flink)

1.Kafka的数据存储形式 一个主题由多个分区组成 一个分区由多个segment段组成 一个segment段由多个文件组成(log,index(稀疏索引),timeindex(根据时间做的索引)) 2.读数据的流程 …

Swagger接口文档管理工具

Swagger 1、Swagger1.1 swagger介绍1.2 项目集成swagger流程1.3 项目集成swagger 2、knife4j2.1 knife4j介绍2.2 项目集成knife4j 1、Swagger 1.1 swagger介绍 官网:https://swagger.io/ Swagger 是一个规范和完整的Web API框架,用于生成、描述、调用和…

textbox跨线程写入

实现实例1 实现效果 跨线程实现 // 委托,用于定义在UI线程上执行的方法签名 //public delegate void SetTextCallback(string text);public void textBoxText(string text){// 检查调用线程是否是创建控件的线程 if (textBox1.InvokeRequired){// 如果不是&#…

React UI框架Antd 以及 如何按需引入css样式配置(以及过程中各种错误处理方案)

一、react UI框架Antd使用 1.下载模块 npm install antd -S 2.引入antd的样式 import ../node_modules/antd/dist/reset.css; 3.局部使用antd组件 import {Button, Calendar} from antd; import {PieChartTwoTone} from ant-design/icons; {/* 组件汉化配置 */} import l…