架构设计:流式处理与实时计算

news2024/11/19 5:55:34

引言

随着大数据技术的不断发展,流式处理和实时计算在各行各业中变得越来越重要。那么什么是流式处理呢?我们又该怎么使用它?流式处理允许我们对数据流进行实时分析和处理,而实时计算则使我们能够以低延迟和高吞吐量处理数据。本文将介绍流式处理和实时计算的架构设计,包括使用场景、Java代码示例以及在使用过程中需要注意的问题。

1. 概述

1.1 概念定义
  • 流式处理

    • 流式处理是一种连续处理数据流的方式,数据以流的形式持续进入系统,系统对数据流进行实时处理和分析,并产生实时结果或输出。
    • 流式处理通常涉及对无限数据集合进行处理,不断地处理新的数据输入,而不是一次性地处理静态数据集合。
  • 实时计算

    • 实时计算是一种即时处理数据的方式,数据进入系统后立即进行计算和分析,并产生实时结果或输出。
    • 实时计算通常要求在非常短的时间内完成计算和处理,以满足对数据及时性的要求。
1.2 特点
  • 流式处理的特点

    • 数据持续不断地进入系统,需要对数据流进行实时处理。
    • 数据处理通常是有状态的,需要维护和更新状态信息。
    • 数据处理结果通常是实时的,要求低延迟和高吞吐量。
  • 实时计算的特点

    • 数据需要立即进行处理和计算,以满足对数据的及时性要求。
    • 计算和处理通常需要在非常短的时间内完成,要求低延迟和高性能。
    • 结果通常是实时的,可以立即应用于业务场景中。

2. 流式处理架构设计

2.1 使用场景

流式处理和实时计算适用于许多不同的应用场景,下面是比较常用的场景:

  • 实时监控与警报:监控系统日志、网络流量等,及时发现异常并触发警报。
  • 实时分析:对实时数据进行分析,如实时推荐系统、广告点击率分析等。
  • 实时数据处理:实时处理传感器数据、交易数据等,支持实时决策和操作。
  • 实时数据聚合:将大量的实时数据聚合为汇总报表或统计信息。
2.2 Java代码示例 

Flink流式处理代码示例

Apache Flink 是一个流式处理框架,提供了丰富的流式处理功能和API。以下是一个使用 Apache Flink 进行流式处理的简单 Java 代码示例:

添加maven依赖

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-java</artifactId>
    <version>${flink.version}</version>
</dependency>
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-streaming-java_2.12</artifactId>
    <version>${flink.version}</version>
</dependency>
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class FlinkStreamProcessingExample {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStream<String> text = env.socketTextStream("localhost", 9999);

        DataStream<Tuple2<String, Integer>> counts = text
                .flatMap(new Tokenizer())
                .keyBy(0)
                .sum(1);

        counts.print();

        env.execute("Flink Stream Processing Example");
    }

    public static final class Tokenizer implements FlatMapFunction<String, Tuple2<String, Integer>> {
        @Override
        public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
            String[] words = value.split(" ");
            for (String word : words) {
                out.collect(new Tuple2<>(word, 1));
            }
        }
    }
}

Spark批处理代码示例

Apache Spark 是一个快速、通用、可扩展的大数据处理引擎,Spark 提供了丰富的功能和 API,包括批处理、交互式查询、流式处理和机器学习等。它的核心特性包括内存计算、容错性和高效的数据抽象等。下面用java代码演示如何使用 Spark 进行单词计数。

<dependencies>
    <!-- Spark 核心依赖 -->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-core_2.12</artifactId>
        <version>3.2.0</version>
    </dependency>

    <!-- Spark SQL 依赖(如果需要使用 SQL 功能)-->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-sql_2.12</artifactId>
        <version>3.2.0</version>
    </dependency>
</dependencies>
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;

import java.util.Arrays;

public class WordCount {

    public static void main(String[] args) {
        // 创建 Spark 配置对象
        SparkConf conf = new SparkConf().setAppName("WordCount").setMaster("local");

        // 创建 Spark 上下文对象
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 读取文本文件并创建 RDD
        JavaRDD<String> lines = sc.textFile("input.txt");

        // 将每行文本拆分为单词
        JavaRDD<String> words = lines.flatMap(line -> Arrays.asList(line.split(" ")).iterator());

        // 将单词转换为键值对,键为单词,值为1
        JavaRDD<String> pairs = words.mapToPair(word -> new Tuple2<>(word, 1));

        // 对键值对进行聚合操作,统计单词出现的次数
        JavaRDD<String> wordCounts = pairs.reduceByKey((x, y) -> x + y);

        // 打印结果
        wordCounts.foreach(wordCount -> System.out.println(wordCount._1 + ": " + wordCount._2));

        // 关闭 Spark 上下文对象
        sc.close();
    }
}

3. 框架介绍及对比

3.1. Apache Kafka Streams
  • 简介:Apache Kafka Streams 是一个用于构建实时流处理应用程序的库,它直接构建在 Apache Kafka 之上,并与 Kafka 集成紧密。特点

    • 轻量级,易于使用,直接与 Kafka 集成。
    • 提供了丰富的 API,支持状态管理、窗口操作等功能。
    • 可以与 Apache Kafka Connect、Kafka Producer 和 Kafka Consumer 无缝集成。
3.2. Apache Flink
  • 简介:Apache Flink 是一个分布式流处理框架,提供了高吞吐量、低延迟的流处理能力,同时支持批处理。

  • 特点

    • 支持事件时间处理、状态管理、容错性等特性。
    • 提供了丰富的算子和 API,支持丰富的流处理和批处理操作。
    • 支持灵活的窗口操作、流与表的集成等功能。
3.3. Apache Storm
  • 简介:Apache Storm 是一个分布式实时计算系统,用于处理大规模实时数据流。

  • 特点

    • 提供了高吞吐量、低延迟的实时数据处理能力。
    • 支持容错性、可扩展性等特性。
    • 提供了丰富的拓扑结构和可编程 API,支持复杂的实时数据处理流程。

3.4. Spark Streaming

  • 简介:Spark Streaming 是 Apache Spark 生态系统中的一个组件,提供了高级别的流处理抽象,使得用户可以使用 Spark 引擎来处理实时数据流。

  • 特点

    • 提供了与 Spark 集成的流处理 API,支持类似于批处理的编程模型。
    • 可以利用 Spark 引擎的内存计算和优化技术,实现高吞吐量和低延迟的流处理。
3.5. Apache Hadoop MapReduce
  • 简介:Apache Hadoop MapReduce 是一个分布式批处理框架,用于处理大规模数据集。虽然它不是专门用于流式处理和实时计算的框架,但也可以用于批处理的实时数据分析。

  • 特点

    • 支持分布式批处理任务的并行执行。
    • 可以处理大规模数据集,适用于离线数据分析和处理。
    • 对于实时计算场景,可能存在较高的延迟和较低的吞吐量。

下面是一个简单的表格,对这几个流式处理和实时计算框架进行了对比:

框架特点优点缺点
Apache Kafka Streams直接构建在 Kafka 之上,易于集成与 Kafka 集成紧密,提供了丰富的 API 和状态管理功能功能相对较简单,不如 Flink 灵活
Apache Flink高吞吐量、低延迟,支持事件时间处理等特性提供了丰富的 API 和算子,支持流处理和批处理操作部署和维护相对复杂,学习曲线较陡
Apache Storm高吞吐量、低延迟,支持复杂的实时处理流程可以处理大规模实时数据流,提供了丰富的可编程 API 和拓扑结构相对于 Flink 和 Spark Streaming 功能较为有限
Spark Streaming利用 Spark 引擎的内存计算和优化技术与 Spark 集成紧密,提供了高级别的流处理抽象,易于使用和集成延迟较高,不如 Flink 那样支持低延迟处理
Apache Hadoop MapReduce分布式批处理框架,适用于离线数据分析可以处理大规模数据集,适用于离线数据分析和处理不适用于流式处理和实时计算场景

各个框架都有其独特的特点和适用场景,选择合适的框架应根据具体业务需求、技术栈和团队实际情况进行评估和选择。

4. 注意事项

在设计实时计算架构时,需要考虑以下几个关键的注意事项:

  • 性能与延迟

    • 实时计算的一个重要指标是性能和延迟。需要确保实时计算系统能够在较短的时间内处理数据,以满足实时性的要求。为了达到较低的延迟,可以采用并行计算、内存计算等技术手段来优化性能。
  • 容错与可靠性

    • 实时计算系统需要具备良好的容错性和可靠性,以应对可能发生的故障或异常情况。为了保证数据处理的准确性,需要实现数据的持久化和恢复机制,并在系统崩溃时能够自动恢复工作状态。
  • 数据一致性

    • 实时计算系统需要保证处理的数据具有一致性,避免数据丢失或重复处理。在数据处理过程中,需要考虑如何处理数据的并发访问和并行计算,以确保数据的一致性和准确性。
  • 负载均衡

    • 实时计算系统需要能够有效地处理大量的数据流,并确保各个计算节点之间的负载均衡。需要考虑如何分配和调度任务,以最大化系统的吞吐量和性能。
  • 监控与调试

    • 实时计算系统需要建立完善的监控和调试机制,及时发现和解决问题。可以通过监控系统性能指标、日志记录和异常处理等方式来实现对系统运行状态的监控和分析,以及对异常情况的处理和调试。
  • 扩展性与灵活性

    • 实时计算系统需要具备良好的扩展性和灵活性,以应对不断增长的数据规模和变化的业务需求。需要考虑如何设计可扩展的架构和组件,以便随着业务的发展和数据量的增长进行水平扩展和垂直扩展。
  • 安全性

    • 实时计算系统需要具备良好的安全性,保护系统和数据免受恶意攻击和未经授权的访问。需要考虑如何实现数据加密、身份验证、访问控制等安全机制,以确保数据的保密性和完整性。

5. 结语 

在大数据领域,流式处理和实时计算是处理实时数据的关键技术,不同的框架则提供了各自独特的特点和优势。在选择合适的框架时,需要综合考虑业务需求、技术栈、团队技术水平以及系统规模等因素。无论选择哪种框架,都需要根据实际情况进行灵活应用,不断优化和改进,以实现更高效、更可靠的实时数据处理系统。

 

相关参考:

Flink vs. Spark:特点、区别和使用场景_spark和flink应用场景区别-CSDN博客

Kafka快速实战与基本原理详解-CSDN博客 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1472419.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

axure9.0 工具使用思考

原型设计软件【AxureRP】快速原型设计工具原型设计软件【AxureRP】快速原型设计工具原型设计软件【AxureRP】快速原型设计工具原型设计软件【AxureRP】快速原型设计工具原型设计软件【AxureRP】快速原型设计工具原型设计软件【AxureRP】快速原型设计工具原型设计软件【AxureRP】…

linux中查找进程cpu使用率高的原因

查询哪些进程/线程cpu使用率高 使用 top 命令&#xff1a; 在终端中运行 top 命令&#xff0c;它会实时显示系统中正在运行的进程和线程&#xff0c;并按照 CPU 使用率进行排序。你可以按 Shift P 键按照 CPU 使用率对进程进行排序&#xff0c;或者按 Shift T 键按照线程进…

nginx基础模块配置详解

目录 一、Nginx相关配置 1、nginx配置文件 2、nginx模块 二、nginx全局配置 1、关闭版本或修改版本 1.1 关闭版本 1.2 修改版本 2、修改nginx启动的子进程数 3、cpu与worker进程绑定 4、PID路径 5、nginx进程的优先级 6、调试worker进程打开文件的个数 7、nginx服…

idea 设置启动类置底/设置folders置顶

在新建项目的时候启动类外和swagger交叉展示在包之间&#xff0c;缺少美观&#xff0c;这在一个有洁癖的程序员眼里是非常不能接受的。在网上大量检索相关的设置&#xff0c;一无所获。但是苍天犹怜&#xff0c;经过我一上午的探索&#xff0c;终于在一个犄角旮旯里面找到了这个…

【可实战】被测系统业务架构、系统架构、技术架构、数据流、业务逻辑分析

一、为什么要学习 更深的理解业务逻辑&#xff08;公司是做什么的&#xff1f;它最重要的商务决策是什么&#xff1f;它里面的数据流是怎么做的&#xff1f;有哪些业务场景&#xff1f;考验你对这家公司、对所负责业务的熟悉程度。公司背后服务器用什么软件搭建的&#xff1f;…

系统找不到xinput1_3.dll怎么办?试试这五种解决方法轻松搞定

在计算机系统运行过程中&#xff0c;当我们遭遇“找不到xinput1_3.dll”这一错误提示时&#xff0c;实际上正面临一个软件兼容性、系统组件缺失以及游戏或应用程序无法正常启动的关键问题。深入探究这一现象&#xff0c;我们会发现它可能引发一系列连带问题&#xff0c;例如某些…

蓝桥杯Learning

Part 1 递归和递推 1. 简单斐波那契数列 # 这里使用了数组进行保存 n int(input())st [0]*(47) # 注意这个地方&#xff0c;需要将数组空间设置的大一些&#xff0c;否则会数组越界 st[1] 0 st[2] 1def dfs(u):if u 1:print(st[1],end" ")if u 2:print(str(st[…

黑马程序员——接口测试——day03

目录&#xff1a; Potman断言 Postman断言简介Postman常用断言 断言响应状态码断言包含某字符串断言JSON数据Postman断言工作原理Postman关联 简介实现步骤核心代码创建环境案例1案例2Postman参数化 简介数据文件简介编写数据文件 CSV文件JSON文件导入数据文件到postman读取数…

数据安全治理实践路线(下)

数据安全运营阶段通过不断适配业务环境和风险管理需求&#xff0c;持续优化安全策略措施&#xff0c;强化整个数据安全治理体系的有效运转。 数据安全运营 1. 风险防范 数据安全治理的目标之一是降低数据安全风险&#xff0c;因此建立有效的风险防范手段&#xff0c;对于预防…

3、函数定义,函数调用,this指向总结,闭包

一、函数的定义方式 1、函数声明 function demo1() {var num 12var result Math.pow(num,2)//指数函数return result }2、函数表达式 var demo2 function (x,y) { //内置对象arguments前面的两个参数 是 x,yvar sum arguments[0] arguments[1]console.log(sum) }3、构…

web组态插件

插件演示地址&#xff1a;http://www.byzt.net 关于组态软件&#xff0c;首先要从组态的概念开始说起。 什么是组态 组态&#xff08;Configure&#xff09;的概念来自于20世纪70年代中期出现的第一代集散控制系统&#xff08;Distributed Control System&#xff09;&#xf…

docker build基本命令

背景 我们经常会构建属于我们应用自己的镜像&#xff0c;这种情况下编写dockerfile文件不可避免&#xff0c;本文就来看一下常用的dockerfile的指令 常用的dockerfile的指令 首先我们看一下docker build的执行过程 ENV指令&#xff1a; env指令用于设置shell的环境变量&am…

渗透测试—信息收集

渗透测试—信息收集 1. 收集域名信息1.1. 域名注册信息1.2. SEO信息收集1.3. 子域名收集1.3.1. 在线子域名收集1.3.2. 子域名收集工具 1.4. 域名备案信息1.5. ICP备案号查询1.6. SSL证书查询 2. 收集真实IP2.1. 超级ping2.2. Ping2.3. CDN绕过 3. 收集旁站或C段IP3.1. 旁站或C段…

一款非常专业的图形设计工具CorelDRAW2024中文破解版

CorelDRAW2024&#xff08;简称CDR2024&#xff09;是一款非常专业的图形设计工具&#xff0c;该产品推出了全新的2023版本&#xff0c;在功能和体验上更进一步&#xff0c;最新的填充和透明设备功能可以完全控制任何类型的纹理&#xff0c;适用于网络摄影、印刷项目、艺术、排…

【析】装卸一体化车辆路径问题的自适应并行遗传算法

0 引言 国内外有关 &#xff36;&#xff32;&#xff30;&#xff33;&#xff30;&#xff24;的文献较多&#xff0c;求解目标多以最小化车辆行驶距离为主&#xff0c;但现实中可能存在由租赁费用产生的单次派出成本&#xff0c;需要综合考 虑单次派车成本和配送路径成本。…

JetBrains系列工具,配置PlantUML绘图

PlantUML是一个很强大的绘图工具&#xff0c;各种图都可以绘制&#xff0c;具体的可以去官网看看&#xff0c;或者百度。 PlantUML简述 https://plantuml.com/zh/ PlantUML语言参考指引 https://plantuml.com/zh/guide PlantUML语言是依赖Graphviz进行解析的。Graphviz是开源…

Superhuman 邮箱的替代方案是什么?

Superhuman是一个极好的人工智能工具在电子邮件助理领域。根据SimilarWeb的最新统计&#xff0c;它在全球网站排名中排名第21980位&#xff0c;月访问量为1751798。然而市场上还有许多其他优秀的选择。为了帮助您找到最适合您需求的解决方案&#xff0c;我们为您精心挑选了10种…

快让Live2D小可爱住进你的网站吧

文章目录 一、效果请欣赏二、教程1.下载项目工程2.本地自行修复测试3. 测试 一、效果请欣赏 二、教程 1.下载项目工程 github地址 可以根据工程的readme来使用demo测试&#xff0c;demo中需要修改 autoload.js api的cdnPath或者apiPath&#xff0c;否则加载不出来人物图片 api…

10个Premiere创意设计项目列表文字清单视频模板素材

10个创意设计项目列表文字清单pr模板视频制作素材&#xff0c;高清分辨率&#xff1a;19201080&#xff0c;Premiere Pro 2019项目&#xff0c;无需插件&#xff0c;包括视频教程&#xff0c;预览图像不包括音频不包括。 更多PR素材下载&#xff1a;https://prmuban.com/37908.…

vue2.0及起步(前端面试知识积累)

1、需要了解的vue概要知识 1、vue是什么&#xff1f; 一套用于构建用户界面的渐进式JavaScript框架。 为什么vue被称为是渐进式JS框架&#xff1f; 答&#xff1a;Vue允许开发者在不同的项目中以渐进式的方式使用它&#xff0c;这种渐进式表现在以下的方面&#xff1a; 逐步采…