Elasticsearch:了解人工智能搜索算法

news2025/1/12 23:17:06

作者:来自 Elastic Jessica Taylor, Aditya Tripathi

人工智能工具无处不在,其原因并不神秘。 他们可以执行各种各样的任务并找到许多日常问题的解决方案。 但这些应用程序的好坏取决于它们的人工智能搜索算法。

简单来说,人工智能搜索算法是人工智能工具用来找到特定问题的最佳解决方案的决策公式。 搜索算法可能会在速度、相关性或其他加权因素之间进行权衡。 它考虑了查询的约束和目标,并返回了它计算出的最佳解决方案。

在这篇文章中,我们将介绍:

  • AI 搜索算法的重要性和应用
  • 人工智能搜索算法的要素
  • 不同类型的人工智能搜索算法
  • AI 搜索算法用例
  • 使用人工智能搜索算法时的挑战和限制

读完本文后,你将清楚地了解它们是什么以及如何在 AI 工具中使用它们。

人工智能中的搜索算法是什么?

人工智能搜索算法是一种通过评估索引数据和文档来理解自然语言查询并查找相关结果的方法。 它通过探索一组潜在的解决方案来实现这一点,以便找到针对所给出的查询的最佳答案或解决方案。

想象一下,你正在使用人工智能构建一个国际象棋应用程序,该应用程序可以预测下一步的最佳走法。 为了确定最佳动作,你的人工智能搜索算法必须评估不同的选项,以决定哪一个最好。 这意味着系统地评估每个棋子的位置,评估每种可能的走法组合,并计算你您带来最佳获胜机会的策略。

AI 搜索算法的重要性和应用

人工智能搜索算法在众多领域发挥着至关重要的作用。 其范围从计算机科学问题解决到复杂的物流决策。 它们的多功能性使它们对于应对各种挑战和解决重要问题不可或缺。

例如,NASA 能够使用 Elastic® 中的 AI 搜索算法分析来自火星任务的漫游器数据。 这使他们能够比手动分析这些数据更快地解锁关键见解并应对复杂的挑战。 在医疗保健领域,人工智能搜索算法被用来协助医疗诊断、治疗计划和药物发现。 这将带来更好的诊断准确性、更有效的治疗计划以及新疗法的开发。

这些例子强调了重要性和潜力,但这些算法的应用远远超出了这些用例。 金融、制造、法律服务等各个领域已经受益于这种处理大量数据并做出明智决策的新能力。 随着人工智能算法的不断发展,它将在各个行业发挥更加突出的作用,并对我们周围的世界产生巨大影响。

人工智能搜索算法的要素

每个人工智能搜索算法都可以分为四个要素:状态(states)、动作(actions)、目标(goals)和路径成本(path costs)。 这种元素框架是算法如何导航复杂问题空间以找到最佳解决方案的方式。

状态是特定时间点问题的快照。 它们封装了当时问题的所有相关信息,因此算法可以评估当前情况。 把它想象成一个迷宫 —— 每个转弯都代表迷宫中不同的 “状态”。 因此,通过查看状态,你就知道人工智能在算法中的位置。

动作是状态之间可能的转换。 继续使用迷宫的比喻,这些动作是你可以选择的可用方向。 通过组合这些操作,你可以确定穿过迷宫的不同潜在路径。

目标是搜索过程的最终目标。 在搜索中,这个目标将是初始查询的最佳且最相关的答案。 这为算法提供了明确的方向,因此其工作重点是寻找最佳结果。 在迷宫示例中,查询 “找到逃离迷宫的最佳路线” 将是目标。

路径成本是回答查询的路径中每个步骤或动作的精确度和召回率之间的权衡。 该成本代表进行每个特定动作所需的努力或资源。 然后,算法可以使用该成本来优先考虑高效且资源经济的路线。

AI 搜索算法的类型

自然语言处理 (NLP) 算法

NLP 算法是搜索的重要组成部分,因为它们弥合了人类交流和机器理解之间的差距。 这使得搜索人工智能能够理解所要求的内容,并提供与查询相关且上下文相关的结果。

使用 NLP,搜索结果将更加符合用户的意图,并且算法将能够通过理解更细微的请求来处理复杂的查询。 这是因为它可以识别情绪并理解上下文,并根据之前与用户的对话来个性化搜索体验。

词嵌入 - word embeddings

算法处理单词以查找相似性的方法之一是使用词嵌入,其中单词和资产表示为向量。 这是它分析文本和图像等非结构化数据并将其转换为数值的地方。

一个流行的例子是 Word2vec,这是一种从大量书面文本中学习词嵌入的算法。 然后,它分析周围的文本以确定含义并理解上下文。 另一个例子是 GloVe(Global Vectors for Word Representation - 单词表示的全局向量),它也被训练为通过根据语义相似性映射不同单词来建立不同单词之间的连接。

语言模型

还有一些语言模型可以分析大量数据,以便准确预测单词出现顺序的可能性。 或者更简单地说,它们是算法,使搜索人工智能不仅能够理解我们所说的内容,而且能够以与人类沟通方式相匹配的方式做出响应。

例如,BERT(来自 Transformers 的双向编码器表示)是一种流行的语言模型,能够理解复杂而细致的语言,然后可用于强大的语义搜索和问答。

近似最近邻(Aproximate nearest neighbors - ANN)

使用 kNN 查找最接近的匹配的另一种方法是查找足以满足你的特定需求的匹配。 这就是近似最近邻算法的优势所在。 这是因为 ANN 算法会查找与查询非常接近的数据,但不一定是最接近的数据。 因此,人工神经网络不会费力地分析每一个数据,这可能会耗费时间和资源,而是会满足于不太接近但相对而言仍然 “足够接近” 的东西。

这样做的好处是你可以创建更快、更高效的相似性搜索。 人工神经网络通过推断内容和数据之间的语义关系来实现这些 “足够接近” 的结果。

然而,要使这种方法有价值,你需要接受准确的权衡,因为它不能保证最接近的结果。 大多数时候,人工神经网络都是一个很好的解决方案,但如果你需要保证绝对准确性,这可能不是你的最佳选择。

无信息 (uninformed)或盲目的搜索算法

无信息搜索算法(也称为盲搜索算法)不知道有关搜索空间的信息。 他们系统地解决查询,没有指导或特定领域的知识。 他们完全依赖搜索空间的现有结构来寻找解决方案。

无信息搜索算法有多种不同类型,但最常见的三种是广度优先搜索 (breath-first search - BFS)、深度优先搜索 (depth-first search - DFS) 和统一成本搜索 (uniform cost search - UCS)。

知情(informed)或启发式搜索算法

知情搜索算法(也称为启发式搜索算法)是一种使用附加信息和特定领域知识来指导搜索的搜索类型。 与无信息的搜索不同,他们使用启发式方法,这是经验法则和估计,可以帮助他们确定路径的优先级并避免不必要的探索。

有几种不同类型的知情搜索算法,但最常见的是贪婪最佳优先搜索(best-first search)、A* 搜索和束搜索(beam search)。

AI 搜索算法的用例

正如我们已经提到的,人工智能搜索算法正在广泛的行业中用于完成各种任务。 这里只是一些现实世界的例子,它们产生了巨大的影响。

  • 信息检索:NLP 搜索算法可以通过理解查询的上下文和语气来增强搜索结果,以检索更多有用的信息。
  • 推荐:kNN 算法通常用于根据偏好和过去的行为推荐产品、电影或音乐。
  • 语音识别:人工神经网络算法通常用于识别语音模式。 这在语音转文本和语言识别等方面非常有用。
  • 医疗诊断:人工智能搜索算法可以帮助加快医疗诊断速度。 例如,它们可以接受海量医学图像数据集的训练,并使用图像识别来检测照片、X 射线、CT 扫描等中的异常情况。
  • 寻路:无信息搜索算法可以帮助找到地图或网络上两点之间的最短路径。 例如,确定司机的最短送货路线。

AI 搜索算法的挑战和局限性

人工智能搜索算法可能通过高效的问题解决和决策而彻底改变了各个行业,但它们也带来了挑战和限制。 首先,所涉及的计算复杂性可能使它们的运行成本极其昂贵。 这是因为它们需要大量的处理、计算和内存资源来执行搜索。 在有限制的情况下,这限制了它们的有效性。

另一个问题是,知情搜索算法的好坏取决于它所使用的启发式算法。 如果启发式函数不准确,它可能会导致算法走上错误的道路并导致次优甚至不正确的解决方案。

此外,人工智能搜索算法通常被设计用来解决特定类型的问题,例如寻路和约束满足。 这对于某些任务很有用,但解决问题的范围仍然存在限制,特别是在解决更多样化的问题时。

解码人工智能搜索未来

人工智能搜索算法是解决各个领域复杂的现代问题的重要工具。 它们的多样性和多功能性使它们对于寻路、规划和机器学习等任务不可或缺。

尽管它们正在彻底改变机器人、医疗保健和金融等行业,但仍然存在巨大的潜力。 当前的局限性和挑战也是未来进步的机遇。 随着研究不断提高性能,人工智能搜索算法将继续在解决现实问题和改变技术面貌方面发挥日益突出的作用。

接下来你应该做什么

只要你准备好...我们可以通过以下四种方式帮助你从业务数据中获取见解:

  • 开始免费试用,看看 Elastic 如何帮助你的业务。
  • 浏览我们的解决方案,了解 Elasticsearch 平台的工作原理以及我们的解决方案如何满足你的需求。
  • 了解如何在企业中提供生成式人工智能。
  • 通过电子邮件、LinkedIn、Twitter 或 Facebook 与你认识的愿意阅读本文的人分享本文。

更多关于人工智能的文章,请参阅 “NLP - 自然语言处理,向量搜索及人工智能” 专栏。

原文:Understanding AI search algorithms | Elastic Blog

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1471147.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何搭建零售行业经营分析体系?

​怎么搭建零售行业的经营分析体系? 整体思路就是:利用数据中台基于业务全价值链的数据沉淀,借助大数据技术进行采集、计算、存储和加工,同时统一数据建模与治理,构建数据资产,充分挖掘数据,实…

从事通讯信息类职业岗位的任职资格

通讯信息工程师,主要是移动核心网和固网核心网的工程切割和维护网络安全的专业工作,主要负责IP数据、省网和地域网络的维护。一切跟互联网打交道的事情,都跟这个有关系,都是通讯信息类岗位的工作。从事这种工作,需要付…

IOBR2 更新(学习自备)

IOBR查看其收录的相关基因集(自备)_肿瘤 tme特征 iobr-CSDN博客 IOBR2:多维度解析肿瘤微环境 - 知乎 (zhihu.com) 学习手册:https://iobr.github.io/book/ (里面有详细教程) 系统综合的分析工具(Immuno-Oncology Bi…

flutter简单的MethodChannel通道Demo(引入调用小红书sdk)

flutter端创建MethodChannel类 import package:flutter/services.dart;//MethodChannel const methodChannel const MethodChannel(com.flutter.demo.MethodChannel);class FlutterMethodChannel {/** MethodChannel flutter给原生发信息* 在方法通道上调用方法invokeMethod*…

基于YOLOv8深度学习+Pyqt5的电动车头盔佩戴检测系统

wx供重浩:创享日记 对话框发送:225头盔 获取完整源码源文件已标注的数据集(1463张)源码各文件说明配置跑通说明文档 若需要一对一远程操作在你电脑跑通,有偿89yuan 效果展示 基于YOLOv8深度学习PyQT5的电动车头盔佩戴检…

第十三章 Linux——备份与恢复

第十三章 Linux——备份与恢复 基本介绍安装dump和restore使用dump完成备份dump语法说明dump应用案例1dump应用案例2dump-w查看备份时间文件备份文件或者目录备注 使用restore基本语法基本介绍restore基本语法应用案例1应用案例2应用案例3应用案例4 基本介绍 实体机无法做快照…

vue2 之 Vue-Quill-Editor富文本编辑器

一、安装 1. 下载 npm i vue-quill-editor 2. 配置 页面配置 <script> import quill/dist/quill.core.css; import quill/dist/quill.snow.css; import quill/dist/quill.bubble.css; import { quillEditor } from vue-quill-editor;export default {components: { …

机器人内部传感器阅读笔记及心得-位置传感器-旋转变压器、激光干涉式编码器

旋转变压器 旋转变压器是一种输出电压随转角变化的检测装置&#xff0c;是用来检测角位移的&#xff0c;其基本结构与交流绕线式异步电动机相似&#xff0c;由定子和转子组成。 旋转变压器的原理如图1所示&#xff0c;定子相当于变压器的一次侧&#xff0c;有两组在空间位置上…

【教程】 iOS混淆加固原理篇

摘要 本文介绍了iOS应用程序混淆加固的缘由&#xff0c;编译过程以及常见的加固类型和逆向工具。详细讨论了字符串混淆、类名、方法名混淆、程序结构混淆加密等加固类型&#xff0c;并介绍了常见的逆向工具和代码虚拟化技术。 引言 在iOS开发中&#xff0c;为了保护应用程序…

matlab|基于DistFlow潮流的配电网故障重构(输入任意线路)

目录 1 主要内容 2 部分代码 3 程序结果 4 下载链接 1 主要内容 程序采用适用于辐射状网络的DistFlow潮流模型&#xff0c;可输入任意故障线路编号&#xff0c;得到优化重构结果。这个程序是配电网故障重构可视化matlabyalmip的升级版&#xff0c;原来的程序是以电压质量作…

用39块钱的全志V851se视觉开发板做了个小相机,还可以物品识别、自动追焦!

用39块钱的V851se视觉开发板做了个小相机。 可以进行物品识别、自动追焦&#xff01; 这个超低成本的小相机是在V851se上移植使用全志在线开源版本的Tina Linux与OpenCV框架开启摄像头拍照捕获视频&#xff0c;并结合NPU实现Mobilenet v2目标分类识别以及运动追踪等功能…并最终…

CentOS删除除了最近5个JAR程序外的所有指定Java程序

帮我写一个shell脚本,ps -eo pid,lstart,cmd --sort=-start_time | grep "pgz-admin"查到的结果,返回的所有进程PID,第六个之上的,全部kill 当然,你可以创建一个简单的Shell脚本来完成这个任务。以下是一个例子: #!/bin/bash# 获取包含 "pgz-admin"…

SSM框架学习笔记07 | Spring MVC入门

文章目录 1. HTTP协议2. Spring MVC2.1. 三层架构2.2. MVC&#xff08;解决表现层的问题&#xff09;2.3. 核心组件 3. Thymeleaf3.1. 模板引擎3.2. Thymeleaf3.3. 常用语法 代码 1. HTTP协议 网址&#xff1a;https://www.ietf.org/ &#xff08;官网网址&#xff09; https:…

什么是系统工程(字幕)37

0 00:00:00,740 --> 00:00:03,200 但是呢&#xff0c;我们往后面看 1 00:00:04,100 --> 00:00:08,920 刚才我们讲到那个说&#xff0c;应该是组合关系 2 00:00:08,920 --> 00:00:09,522 对吧 3 00:00:09,522 --> 00:00:11,330 不是泛化关系 4 00:00:12,520 --&…

JavaWeb 自己给服务器安装SQL Server数据库遇到的坑

之前买的虚拟主机免费送了一个SQL Server数据库&#xff0c;由于服务器提供商今年下架我用的那款虚拟主机产品&#xff0c;所以数据库也被收回了。我买了阿里云云服务器&#xff0c;但是没有数据库&#xff0c;于是自己装了一个SQL Server数据库&#xff0c;总结一下遇到的坑。…

JAVA毕业设计129—基于Java+Springboot+thymeleaf的物业管理系统(源代码+数据库)

毕设所有选题&#xff1a; https://blog.csdn.net/2303_76227485/article/details/131104075 基于JavaSpringbootthymeleaf的物业管理系统(源代码数据库)129 一、系统介绍 本项目前后端分离&#xff0c;本系统分为管理员、小区管理员、用户三种角色 1、用户&#xff1a; 登…

栈和堆什么意思,Rust所有权机制又是什么

栈和堆什么意思 栈&#xff1a;存储基本数据类型和引用数据类型的指针引用(地址)&#xff0c;基本数据类型占据固定大小的内存空间。 堆&#xff1a;存储引用数据类型的值&#xff0c;引用数据类型包括对象&#xff0c;数组和函数&#xff0c;在堆中&#xff0c;引用数据类型…

WhatsApp Business API入门:功能、收费、申请方法全解析

WhatsApp Business API是为企业量身打造的一种高级服务&#xff0c;它提供了一组编程接口&#xff08;API&#xff09;&#xff0c;而不是一个可以直接操作的用户界面。与免费版的WhatsApp Business应用不同&#xff0c;WhatsApp Business API并不能在应用商店如App Store或Goo…

git之远程操作

一.分布式版本控制系统 分布式版本控制系统通常也有⼀台充当“中央服务器”的电脑&#xff0c;但这个服务器的作⽤仅仅是⽤来⽅便“交换”⼤家的修改&#xff0c;没有它⼤家也⼀样⼲活&#xff0c;只是交换修改不⽅便⽽已。有了这个“中央服务器”的电脑&#xff0c;这样就不怕…

01背包问题:组合问题

01背包问题&#xff1a;组合问题 题目 思路 将nums数组分成left和right两组&#xff0c;分别表示相加和相减的两部分&#xff0c;则&#xff1a; left - right targetleft right sum 进而得到left为确定数如下&#xff0c;且left必须为整数&#xff0c;小数表示组合不存在&…