PX4FMU和PX4IO最底层启动过程分析(下)
PX4FMU的系统启动函数为nash_main(int argc,char *argv[])
PX4IO的系统启动函数为nash_start(int argc,char *argv[])
PX4FMU启动函数nash_main(int argc,char *argv[])
首先分析一下nash_main(int argc,char *argv[])
PX4FMU中有#define CONFIG_USER_ENTRYPOINT nsh_main
int nsh_main(int argc, char *argv[])
{
int exitval = 0;
int ret;
/* Call all C++ static constructors */
#if defined(CONFIG_HAVE_CXX) && defined(CONFIG_HAVE_CXXINITIALIZE)
up_cxxinitialize();
#endif
/* Make sure that we are using our symbol take */
#if defined(CONFIG_LIBC_EXECFUNCS) && defined(CONFIG_EXECFUNCS_SYMTAB)
exec_setsymtab(CONFIG_EXECFUNCS_SYMTAB, 0);
#endif
/* Register the BINFS file system */
#if defined(CONFIG_FS_BINFS) && (CONFIG_BUILTIN)
ret = builtin_initialize();
if (ret < 0)
{
fprintf(stderr, "ERROR: builtin_initialize failed: %d\n", ret);
exitval = 1;
}
#endif
/* Initialize the NSH library */
nsh_initialize();
/* If the Telnet console is selected as a front-end, then start the
* Telnet daemon.
*/
#ifdef CONFIG_NSH_TELNET
ret = nsh_telnetstart();
if (ret < 0)
{
/* The daemon is NOT running. Report the the error then fail...
* either with the serial console up or just exiting.
*/
fprintf(stderr, "ERROR: Failed to start TELNET daemon: %d\n", ret);
exitval = 1;
}
#endif
/* If the serial console front end is selected, then run it on this thread */
#ifdef CONFIG_NSH_CONSOLE
ret = nsh_consolemain(0, NULL);
/* nsh_consolemain() should not return. So if we get here, something
* is wrong.
*/
fprintf(stderr, "ERROR: nsh_consolemain() returned: %d\n", ret);
exitval = 1;
#endif
return exitval;
}
其中包含
#ifdef CONFIG_NSH_CONSOLE
ret = nsh_consolemain(0, NULL);
进入nsh_consolemain(int argc, char *argv[])
函数
int nsh_consolemain(int argc, char *argv[])
{
FAR struct console_stdio_s *pstate = nsh_newconsole();
int ret;
DEBUGASSERT(pstate);
/* Execute the start-up script */
#ifdef CONFIG_NSH_ROMFSETC
(void)nsh_initscript(&pstate->cn_vtbl);
#endif
/* Initialize any USB tracing options that were requested */
#ifdef CONFIG_NSH_USBDEV_TRACE
usbtrace_enable(TRACE_BITSET);
#endif
/* Execute the session */
ret = nsh_session(pstate);
/* Exit upon return */
nsh_exit(&pstate->cn_vtbl, ret);
return ret;
}
其中包含
/* Execute the start-up script */
#ifdef CONFIG_NSH_ROMFSETC
(void)nsh_initscript(&pstate->cn_vtbl);
#endif
执行启动脚本也就是rcS,接下来根据本身版本分别看ardupilot和PX4原生码
/* Execute the session */
ret = nsh_session(pstate);
执行用户程序
跟踪pstate
FAR struct console_stdio_s *pstate = nsh_newconsole();
进入console_stdio_s *nsh_newconsole(void)
FAR struct console_stdio_s *nsh_newconsole(void)
{
struct console_stdio_s *pstate = (struct console_stdio_s *)zalloc(sizeof(struct console_stdio_s));
if (pstate)
{
/* Initialize the call table */
#ifndef CONFIG_NSH_DISABLEBG
pstate->cn_vtbl.clone = nsh_consoleclone;
pstate->cn_vtbl.release = nsh_consolerelease;
#endif
pstate->cn_vtbl.write = nsh_consolewrite;
pstate->cn_vtbl.output = nsh_consoleoutput;
pstate->cn_vtbl.linebuffer = nsh_consolelinebuffer;
pstate->cn_vtbl.redirect = nsh_consoleredirect;
pstate->cn_vtbl.undirect = nsh_consoleundirect;
pstate->cn_vtbl.exit = nsh_consoleexit;
/* (Re-) open the console input device */
#ifdef CONFIG_NSH_CONDEV
pstate->cn_confd = open(CONFIG_NSH_CONDEV, O_RDWR);
if (pstate->cn_confd < 0)
{
free(pstate);
return NULL;
}
/* Create a standard C stream on the console device */
pstate->cn_constream = fdopen(pstate->cn_confd, "r+");
if (!pstate->cn_constream)
{
close(pstate->cn_confd);
free(pstate);
return NULL;
}
#endif
/* Initialize the output stream */
pstate->cn_outfd = OUTFD(pstate);
pstate->cn_outstream = OUTSTREAM(pstate);
}
return pstate;
}
应该是用户在console输入新的nsh命令吧
PX4IO启动函数nash_start(int argc,char *argv[])
接着分析一下nash_start(int argc,char *argv[])
PX4IO中有#define CONFIG_USER_ENTRYPOINT user_start
int user_start(int argc, char *argv[])
{
/* configure the first 8 PWM outputs (i.e. all of them) */
up_pwm_servo_init(0xff);
/* run C++ ctors before we go any further */
up_cxxinitialize();
/* reset all to zero */
memset(&system_state, 0, sizeof(system_state));
/* configure the high-resolution time/callout interface */
hrt_init();
/* calculate our fw CRC so FMU can decide if we need to update */
calculate_fw_crc();
/*
* Poll at 1ms intervals for received bytes that have not triggered
* a DMA event.
*/
#ifdef CONFIG_ARCH_DMA
hrt_call_every(&serial_dma_call, 1000, 1000, (hrt_callout)stm32_serial_dma_poll, NULL);
#endif
/* print some startup info */
lowsyslog("\nPX4IO: starting\n");
/* default all the LEDs to off while we start */
LED_AMBER(false);
LED_BLUE(false);
LED_SAFETY(false);
#ifdef GPIO_LED4
LED_RING(false);
#endif
/* turn on servo power (if supported) */
#ifdef POWER_SERVO
POWER_SERVO(true);
#endif
/* turn off S.Bus out (if supported) */
#ifdef ENABLE_SBUS_OUT
ENABLE_SBUS_OUT(false);
#endif
/* start the safety switch handler */
safety_init();
/* initialise the control inputs */
controls_init();
/* set up the ADC */
adc_init();
/* start the FMU interface */
interface_init();
/* add a performance counter for mixing */
perf_counter_t mixer_perf = perf_alloc(PC_ELAPSED, "mix");
/* add a performance counter for controls */
perf_counter_t controls_perf = perf_alloc(PC_ELAPSED, "controls");
/* and one for measuring the loop rate */
perf_counter_t loop_perf = perf_alloc(PC_INTERVAL, "loop");
struct mallinfo minfo = mallinfo();
lowsyslog("MEM: free %u, largest %u\n", minfo.mxordblk, minfo.fordblks);
/* initialize PWM limit lib */
pwm_limit_init(&pwm_limit);
/*
* P O L I C E L I G H T S
*
* Not enough memory, lock down.
*
* We might need to allocate mixers later, and this will
* ensure that a developer doing a change will notice
* that he just burned the remaining RAM with static
* allocations. We don't want him to be able to
* get past that point. This needs to be clearly
* documented in the dev guide.
*
*/
if (minfo.mxordblk < 600) {
lowsyslog("ERR: not enough MEM");
bool phase = false;
while (true) {
if (phase) {
LED_AMBER(true);
LED_BLUE(false);
} else {
LED_AMBER(false);
LED_BLUE(true);
}
up_udelay(250000);
phase = !phase;
}
}
/* Start the failsafe led init */
failsafe_led_init();
/*
* Run everything in a tight loop.
*/
uint64_t last_debug_time = 0;
uint64_t last_heartbeat_time = 0;
for (;;) {
/* track the rate at which the loop is running */
perf_count(loop_perf);
/* kick the mixer */
perf_begin(mixer_perf);
mixer_tick();
perf_end(mixer_perf);
/* kick the control inputs */
perf_begin(controls_perf);
controls_tick();
perf_end(controls_perf);
if ((hrt_absolute_time() - last_heartbeat_time) > 250 * 1000) {
last_heartbeat_time = hrt_absolute_time();
heartbeat_blink();
}
ring_blink();
check_reboot();
/* check for debug activity (default: none) */
show_debug_messages();
/* post debug state at ~1Hz - this is via an auxiliary serial port
* DEFAULTS TO OFF!
*/
if (hrt_absolute_time() - last_debug_time > (1000 * 1000)) {
isr_debug(1, "d:%u s=0x%x a=0x%x f=0x%x m=%u",
(unsigned)r_page_setup[PX4IO_P_SETUP_SET_DEBUG],
(unsigned)r_status_flags,
(unsigned)r_setup_arming,
(unsigned)r_setup_features,
(unsigned)mallinfo().mxordblk);
last_debug_time = hrt_absolute_time();
}
}
}
user_start 负责px4io 基础环境的初始化,包括PWM,串口,ADC 等资源的初始化,最后运行一个死循环,用于处理遥控器输入,与PX4FMU 通讯的内容
controls_tick 负责处理遥控器的输入内容,包括SBUS 的处理sbus_input、 SPKT/DSM 的处理dsm_port_input、 PPM 的处理ppm_input
PX4IO 底层中断处理的内容以下图
(1)紫色为PX4IO 的底层串口IO 操做,流程为当PX4IO 收到PX4FMU 的串口数据后会运行serial_interrupt, serial_interrupt 负责收发DMA 的操做,若是收到一个完整的包,则调用rx_dma_callback 进行处理, rx_dma_callback 首先调用rx_handle_packet 解析包中的内容,判断为写寄存器仍是读寄存器,处理完成后由rx_dma_callback 发送回包给PX4FMU
static int
serial_interrupt(int irq, void *context)
{
static bool abort_on_idle = false;
uint32_t sr = rSR; /* get UART status register */
(void)rDR; /* required to clear any of the interrupt status that brought us here */
if (sr & (USART_SR_ORE | /* overrun error - packet was too big for DMA or DMA was too slow */
USART_SR_NE | /* noise error - we have lost a byte due to noise */
USART_SR_FE)) { /* framing error - start/stop bit lost or line break */
perf_count(pc_errors);
if (sr & USART_SR_ORE) {
perf_count(pc_ore);
}
if (sr & USART_SR_NE) {
perf_count(pc_ne);
}
if (sr & USART_SR_FE) {
perf_count(pc_fe);
}
/* send a line break - this will abort transmission/reception on the other end */
rCR1 |= USART_CR1_SBK;
/* when the line goes idle, abort rather than look at the packet */
abort_on_idle = true;
}
if (sr & USART_SR_IDLE) {
/*
* If we saw an error, don't bother looking at the packet - it should have
* been aborted by the sender and will definitely be bad. Get the DMA reconfigured
* ready for their retry.
*/
if (abort_on_idle) {
abort_on_idle = false;
dma_reset();
return 0;
}
/*
* The sender has stopped sending - this is probably the end of a packet.
* Check the received length against the length in the header to see if
* we have something that looks like a packet.
*/
unsigned length = sizeof(dma_packet) - stm32_dmaresidual(rx_dma);
if ((length < 1) || (length < PKT_SIZE(dma_packet))) {
/* it was too short - possibly truncated */
perf_count(pc_badidle);
dma_reset();
return 0;
}
/*
* Looks like we received a packet. Stop the DMA and go process the
* packet.
*/
perf_count(pc_idle);
stm32_dmastop(rx_dma);
rx_dma_callback(rx_dma, DMA_STATUS_TCIF, NULL);
}
return 0;
}
static void
rx_dma_callback(DMA_HANDLE handle, uint8_t status, void *arg)
{
/*
* We are here because DMA completed, or UART reception stopped and
* we think we have a packet in the buffer.
*/
perf_begin(pc_txns);
/* disable UART DMA */
rCR3 &= ~(USART_CR3_DMAT | USART_CR3_DMAR);
/* handle the received packet */
rx_handle_packet();
/* re-set DMA for reception first, so we are ready to receive before we start sending */
dma_reset();
/* send the reply to the just-processed request */
dma_packet.crc = 0;
dma_packet.crc = crc_packet(&dma_packet);
stm32_dmasetup(
tx_dma,
(uint32_t)&rDR,
(uint32_t)&dma_packet,
PKT_SIZE(dma_packet),
DMA_CCR_DIR |
DMA_CCR_MINC |
DMA_CCR_PSIZE_8BITS |
DMA_CCR_MSIZE_8BITS);
stm32_dmastart(tx_dma, NULL, NULL, false);
rCR3 |= USART_CR3_DMAT;
perf_end(pc_txns);
}
static void
rx_handle_packet(void)
{
/* check packet CRC */
uint8_t crc = dma_packet.crc;
dma_packet.crc = 0;
if (crc != crc_packet(&dma_packet)) {
perf_count(pc_crcerr);
/* send a CRC error reply */
dma_packet.count_code = PKT_CODE_CORRUPT;
dma_packet.page = 0xff;
dma_packet.offset = 0xff;
return;
}
if (PKT_CODE(dma_packet) == PKT_CODE_WRITE) {
/* it's a blind write - pass it on */
if (registers_set(dma_packet.page, dma_packet.offset, &dma_packet.regs[0], PKT_COUNT(dma_packet))) {
perf_count(pc_regerr);
dma_packet.count_code = PKT_CODE_ERROR;
} else {
dma_packet.count_code = PKT_CODE_SUCCESS;
}
return;
}
if (PKT_CODE(dma_packet) == PKT_CODE_READ) {
/* it's a read - get register pointer for reply */
unsigned count;
uint16_t *registers;
if (registers_get(dma_packet.page, dma_packet.offset, ®isters, &count) < 0) {
perf_count(pc_regerr);
dma_packet.count_code = PKT_CODE_ERROR;
} else {
/* constrain reply to requested size */
if (count > PKT_MAX_REGS) {
count = PKT_MAX_REGS;
}
if (count > PKT_COUNT(dma_packet)) {
count = PKT_COUNT(dma_packet);
}
/* copy reply registers into DMA buffer */
memcpy((void *)&dma_packet.regs[0], registers, count * 2);
dma_packet.count_code = count | PKT_CODE_SUCCESS;
}
return;
}
/* send a bad-packet error reply */
dma_packet.count_code = PKT_CODE_CORRUPT;
dma_packet.page = 0xff;
dma_packet.offset = 0xfe;
}
(2) 蓝色为包操做,只提供registers_set 写操做和registers_get 读操做
(3)IOPacket 为协议包,包括如下几部分
定义 | 描述 |
---|---|
count_code | 标记包的读写,错误,长度等信息 |
crc | 为包的效验码 |
page | 为数据页 |
offset | 为数据偏移量 |
regs | 为数据内容 |