数据可视化基础与应用-01-课程目标与职位分析

news2025/1/16 18:49:07

总结

本系列是数据可视化基础与应用的第01篇,主要介绍本门课程的课程目标与职位分析

教材

在这里插入图片描述

数据可视化基础与应用

课程教学方法

布鲁姆教学法

认知领域(cognitive domain)
1.知道(知识)(knowledge)
是指认识并记忆。这一层次所涉及的是具体知识或抽象知识的辨认,用一种非常接近于学生当初遇到的某种 观念和现象时的形式,回想起这种观念或现象。
提示:回忆,记忆,识别,列表,定义,陈述,呈现
2.领会(comprehension)
是指对事物的领会,但不要求深刻的领会,而是初步的,可能是肤浅的。其包括“转化”、解释、推断等。
提示: 说明,识别,描述,解释,区别,重述,归纳,比较
3.应用(application)
是指对所学习的概念、法则、原理的运用。它要求在没有说明问题解决模式的情况下,学会正确地把抽象概念运用于适当的情况。这里所说的应用是初步的直接应用,而不是全面地、通过分析、综合地运用知识。
提示: 应用,论证,操作,实践,分类,举例说明,解决
在这里插入图片描述
4.分析(analysis)
是指把材料分解成它的组成要素部分,从而使各概念间的相互关系更加明确,材料的组织结构更为清晰,详细地阐明基础理论和基本原理。
提示: 分析,检查,实验,组织,对比,比较,辨别,区别
5.综合(synthesis)
是以分析为基础,全面加工已分解的各要素,并再次把它们按要求重新地组合成整体,以便综合地创造性地解决问题。它涉及具有特色的表达,制定合理的计划和可实施的步骤,根据基本材料推出某种规律等活动。它强调特性与首创性,是高层次的要求。
提示: 组成,建立,设计,开发,计划,支持,系统化
6.评价(evaluation)
这是认知领域里教育目标的最高层次。这个层次的要求不是凭借直观的感受或观察的现象作出评判,而是理性的深刻的对事物本质的价值作出有说服力的判断,它综合内在与外在的资料、信息,作出符合客观事实的推断。
提示: 评价,估计,评论,鉴定,辩明,辩护,证明,预测,预言,支持

在这里插入图片描述依据教学目标,教学设计首先要思考实践项目轴,比如说先了解客户需求,可以参考借鉴的项目有哪些,基于同类产品或是市场需求提出实践项目成果主题,从而进行整体设计。在整体设计当中,还要考虑创新点在哪里,原型如何完成,再来验证功能否满足客户的需求。项目的推进由需求开始,到最终功能实现和功能验证结束,这个就是实践项目轴。
围绕实践项目轴,鼓励学生去调研,让学生参考别人是如何做的,结合自身的理解,自身小组的团队特性,能不能够更好的推进。调研样本轴可以起到上述的作用。
调研的过程会在教学情境轴的各个知识单元中体现,教师讲授对应的情境内容后,学生去调研验证老师所教内容的正确性,然后学以致用,把知识落到自己的本组项目中。
课程知识轴主要是把知识讲清楚,在不同的教学情境下,有哪些知识,有哪些技能,解决了什么问题。而教学情境是伴随知识轴的,情境是跟着知识走,知识需要讲什么,就需要什么样的场景。知识需要讲什么,是从项目的逻辑来的,通过最后的实践项目,来确定各个单元的知识讲什么。
围绕这四个轴,可以贯彻人才成长规律、教育规律和项目运作和事物发展规律。人才成长规律体现尊重学生学情,体现OBE教育理念,以成果为导向,以教学成果为思考点的一个成果导向。教育规律就是一个由浅入深,由感性认知到理性认知,由理论到实践,然后再由实践到反思内化。项目运作和事物发展规律体系体现PBL教学方法,基于客户的新需求,激发创意,融入到教学当中支撑教学。
在上面四个轴的基础上,还有道法术器四个教学内涵轴。Python语言开发有哪些原理,
应用的方向有哪些(道);基于编程语言的原理和应用方向,一个开发的流程是如何的(法);实现这些流程用到哪些方式,哪些方法(术);比如想实现一个开源的三方可视化模块,需要用到哪些工具(器)。这些内容是需要教师教给学生的四个层面。
除了教学层次,在双创和思政方向也可以采用道法术器四个层面进行融合。
教学设计以学生的成长和获得感为设计主线,以问题为导向激活学生、引导教学,以项目为导向体现价值、彰显成果。

毕业设计选题

在这里插入图片描述

职位信息

boss直聘

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

本门课程的目标

完成一个BI报表:
神策数据

懂业务+会一种BI技术+会指标体系构建+评价体系

数据分析职位分析师如何规划

参考:超详细的数据分析职业规划
一个产品的出现可以从业务和技术两个方向分析,业务需求+技术支持=产品的出现。
如果把职业也当成一个产品,也有类似的分析,

其中业务也就是领域,即这个业务领域的特点与需求,譬如金融领域的风控模型、营销领域的生命周期、广告领域的点击率预估等,各有各的特色。一般而言,成为某一个领域的数据专家会更为有发展(不要频繁的跨越行业)。
技术对应路线,实现这个产品,路线可以分为哪些阶段,以及每个阶段的实现方法

不同业务领域的数据分析师规划

由于领域各有各的特点,本文不对领域进行扩展,后期会对各个领域的数据分析进行专题介绍。

技术维度的数据分析师规划

技术路线大致可以划分成四大方向:数据分析,数据挖掘,数据产品,数据工程。

(一)数据分析/数据运营/商业分析

这是业务方向的数据分析师。 绝大部分人,都是从这个岗位开始自己的数据之路,也是基数最大的岗位。这里更多指互联网行业,偏业务的数据分析师,一般属于运营部门。不少公司也称数据运营或者商业分析。

这类岗位的职位描述一般是:

负责和支撑各部门相关的报表;
建立和优化指标体系;
监控数据的波动和异常,找出问题;
优化和驱动业务,推动数据化运营;
找出可增长的市场或产品优化空间;
输出专题分析报告;

但不少业务端的数据分析师主要工作只做第一点,基本是跑SQL,做报表,成了业务端的表哥。为了避免成为表哥,作为数据分析师要对报表中的指标进行进一步的分析。最常见的就是5W2h分析。

数据分析师-找到问题的原因

以活跃指标的下跌举例:

活跃指标下跌了多少?是属于合理的数据波动,还是突发式?(what)
什么时候开始的下跌?(when)
是整体的活跃用户下跌,还是部分用户?(who)
为什么下跌?是产品版本,还是运营失误?(why)
怎么解决下跌的问题(how)

这是一套标准的解决思维,分别对应what、when、who、why、how,每一部分都不是三言两语可以解释清楚。

不要把现象当结论:
发现指标出现下跌,是现象,不是原因,不要把现象作为结论提交,这是不合格的数据分析。
进一步分析原因:
为什么这个地区的活跃下跌了。是该地渠道,是该地竞争对手,是该地市场环境?这些问题都是细化深入的范畴。并且,它们要能以量化解释,而不是我认为。

做好了这点,才是一个真正的业务端的数据分析师。

这样活跃下跌的问题,本质上也是指标问题。什么时候开始下跌,哪部分下跌,都能转化成对应指标,如日活跃用户数,新老用户活跃数,地区活跃数。
你不能衡量它,就无法增长它,指的就是指标体系。

数据运营-构建指标体系

指标体系是从不同维度梳理业务,把指标有系统地组织起来。简而言之,指标体系=指标+体系,所以一个指标不能叫指标体系,几个毫无关系的指标也不能叫指标体系。

实际工作中,想要准确说清楚一件事是不容易的。例如,你在金融公司工作,工作中可能会听到这样的对话:

“大概有1万多人申请贷款吧”
“有很多人都没有申请通过”
“感觉咱们的审核太严了”。

同事之间这样闲聊说话没什么问题,但是如果是数据分析师在回答业务部门问题的时候就不能这么说了,一定要用准确的数据和指标来描述清楚。例如上边的对话可以改成:

5月4日新申请贷款用户10450人,超目标达成1450人;
5月4日当日申请贷款用户10450人,当日通过2468人;
截至5月6日,5月4日申请贷款的10450名用户中有3690人通过申请,申请通过率35.31%。

上面通过一个指标“申请通过率”说清楚了申请贷款用户的情况。但是实际工作中,往往一个指标没办法解决复杂的业务问题,这就需要使用多个指标从不同维度来评估业务,也就是使用指标体系。

指标体系可以是业务部门建立,但数据分析师也挺合适。一方面他们比数据挖掘这类技术岗位更贴合业务,一方面不像业务岗位对数据抓瞎。
在这里插入图片描述

数据分析师解决问题的同时,将业务数据体系化,建立一套指标框架。两者结合,这岗位也能称为数据运营。

BI工程师

指标体系如果工程化自动化,也就是BI,所以数据分析师可以算半个BI分析师,这里不包括BI报表开发。BI如果采购第三方,数据分析师负责BI没问题,如果自有开发,那么BI岗技术的色彩更浓厚。

神策数据

数据分析师的发展方向

管理:

数据分析师是一个基础岗位,如果专精于业务,更适合往管理端发展,单纯的工具和技巧很难拉开差距。数据分析的管理岗,比较常见的有数据运营经理/总监,数据分析经理等,相对应的能力是能建立指标体系,并且解决日常的各类「为什么」问题。

商业/市场分析:

商业/市场分析是另外一个方向,更多见于传统行业。你要开一家超市,你得考虑哪里开,这就要考虑居民密度,居民消费能力,竞争对手的多寡,步行交通距离,开车交通距离等。这些数据是宏观的大指标,往往靠搜索和调研完成,这是和互联网数据分析师最大的差异。

数据挖掘工程师:

若往其他分支发展,比如数据挖掘工程师,则要继续掌握Python和机器学习等。从业务型发展上来的好处是接地气,具备商业洞察力(天天搞报表,怎么可能不熟),这点是直接做数据挖掘,或者程序员转岗,所不具备的。

新人,比较普适的发展路线是先成为一位数据分析师。积累相关的经验,在一两年后,决定往后的发展,是数据挖掘,还是专精数据分析成为管理岗。

(二)数据挖掘

数据挖掘技术向的数据岗,有些归类在研发部门,有些则单独成立数据部门。
数据挖掘工程师要求更高的统计学能力、数理能力以及编程技巧。

数据挖掘与机器学习的区别:

从概念上说,数据挖掘Data mining是一种方式,机器学习Machine Learning是一门方法/学科。
机器学习主要是有监督和无监督学习和关联规则,有监督又可划分成回归和分类,它们是从过去的历史数据中学习到一个模型,模型可以针对特定问题求解。
在这里插入图片描述
两者有区别,但也有很多相似的地方,如下
机器学习与数据挖掘有什么不同

最优化问题:

除此之外,还有一个领域,属于最优化问题的运筹学。现实中的问题往往有很多约束,比如护士排班,一共有三班(早、中、晚),现在要求每班满足最低护士人数,每位护士尽量不能连班,每位护士不能连续工作5天。每位护士的夜班数要均衡,每位护士每月的班数要均衡…这些问题很难用机器学习的方法完成,而在最优化领域,则有遗传算法、模拟退火算法、蚁群算法等。
实际的应用场景中,如外卖行业,如何寻找骑手效率最大化的最优路径,同样属于最优化,也是数据挖掘的工作范畴。

数据挖掘工程师,除了掌握算法,同样需要编程能力去实现,不论R、Python、Scala/Java,至少掌握一种。模型的实施,往往也要求Hadoop/Spark的工程实践经验,精通SQL/Hive是必须的。

常见数据挖掘项目的闭环如下:

定义问题
数据抽取
数据清洗
特征选取/特征工程
数据模型
数据验证
迭代优化

单看环节,数据挖掘对分析能力没有业务型那么高。这不代表业务不重要,尤其在特征选取方面,对业务的理解很大程度会影响特征怎么选取,进而影响模型质量。用户流失是一个经典的考题,如何选取合适的特征,预测用户会否流失,能够考察对业务是否深刻洞察。

数据挖掘的业务领域一样可以细分。

金融行业的信用模型和风控模型/反欺诈模型、
广告模型的点击预估模型、
电商行业的推荐系统和用户画像系统。
从需求提出到落地,数据挖掘工程师除了全程跟进也要熟悉业务。

因为要求高,所以数据挖掘的平均薪资高于数据分析师。

一个分工明确的团队,数据分析师负责将业务需求抽象成一个具体的数据假设或者模型。
比如,运营希望减少用户流失,那么设立一个流失指标,现在需要预测用户流失率的模型。
模型可以是数据分析师完成,也能是数据挖掘工程师。
最终由数据挖掘团队部署到线上。

数据挖掘分工:

在一些公司,高级数据分析师会等价于数据挖掘工程师(其实行业内,对Title并没有严格的标准),只是工程能力可以稍弱,模型部署由专门的工程团队完成。
数据挖掘工程师,往后发展,称为算法专家。后者对理论要求更严苛,几乎都要阅读国外的前沿论文。方向不局限于简单的分类或者回归,还包括图像识别、自然语言处理、智能量化投顾这种复合领域。这里开始会对从业者的学校和学历提出要求,名校+硕士无疑是一个大优势,也有很多人直接做数据挖掘。
深度学习则更前沿,它由神经网络发展而来,是机器学习的一个子集。因为各类框架开枝散叶,诸多模型百花齐放,也可以算一个全新的分支。除了要求熟悉TensorFlow, Caffe, MXNet等深度学习框架,对模型的应用和调参也是必备的,后者往往是划分普通人和大牛的天堑。
算法专家和深度学习专家,薪资level会更高一级,一般对应于业务型的数据运营/分析总监。
数据科学家是上述岗位的最终形态之一,要么理论能力非常强,往往担任研究院的一把手。要么工程能力突出,上述的系统都能完成平台化的部署。

(三)数据产品

这个岗位比较新兴,它有两种理解,

一种是具备强数据分析能力的PM,
一种是公司数据产品的规划者。

具备强数据分析能力的PM

以数据导向优化和改进产品。在产品强势的公司,数据分析也会划归到产品部门,甚至运营也属于产品部。这类产品经理有更多的机会接触业务,属于顺便把分析师的活也干了,一专多能的典型。
他们会运用不同的数据源,对用户的行为特征分析和挖掘,达到改进产品。最典型的场景就是AB测试。大到页面布局、路径规划、小到按钮的颜色和样式,均可以通过数据指标评估。
俗话说,再优秀的产品经理也跑不过一半AB测试。此类数据产品经理,更多是注重数据分析能力,擅长用分析进行决策。数据是能力的一部分。

公司数据产品的规划者

后者,是真正意义上的数据产品经理。在公司迈大迈强后,数据量与日俱增,此时会有不少数据相关的产品项目:包括大数据平台、埋点采集系统、BI、推荐系统、广告平台等。这些当然也是产品,自然需要提炼需求、设计、规划、项目排期,乃至落地。

我们不妨看几个数据产品经理要求:

负责大数据产品的设计,输出需求文档、产品原型;
负责推荐算法的产品策略,完成相关推荐及个性化推荐产品的需求分析;
负责分析和挖掘用户消费内容的行为数据,为改进算法策略提供依据;
负责客户端数据需求的对接,制定相关埋点规范及口径,相关业务指标验证;
报表展示工具的落地和应用;

和C端注重用户体验不同,数据产品,更注重整体的分析能力和逻辑。除了产品经理最基础的Axure、Visio、MindManager等工具。往往还需要很多技术型的能力。比如了解BI/DW原理和实施、了解常用的推荐算法、了解机器学习模型等。这也很容易理解,C端要求你了解用户需求,而在数据端,主要用户就是数据。
这当然不是说,用户体验不重要,拿推荐算法来说,除了满足用户最基本的感兴趣,也要考虑时效性,考虑新兴趣的挖掘,考虑无数据时的冷启动问题…这些一样是用户体验,只是解决方案也得从数据出发。再多思考一步,模型是离线还是实时,实时怎么实现它?技术细则不用多考虑,但你要知道会有这些坑。后端的数据产品,如报表,用户往往是你隔壁工位的小秦或小路,设计得丑一点不要紧,要是数据指标口径不统一,那才会分分钟骂街。
虽然数据PM需要熟悉各类数据模型、指标、数据挖掘和数据工程的实现,但是聚焦点是把它作为一个项目去实现,故而不用精通。

数据产品经理是一个比较新兴的岗位,所以有丰富经验的从业者并不多,我个人认为,还是存在比较大的职业缺口。当然也有其他问题,一是因为新兴,部门负责人本身也没有想好他们能干什么,不少数据PM还从事表哥的工作。二是数据产品本身可借鉴的经验不多,像APP产品,可以下载体验,总归有一个学习的过程。然而用户画像、BI、算法策略,都是其他公司的内部机密,无从参考,我就遇到不少对用户画像实现非常感兴趣的数据PM。

从职业发展上看,数据分析师做数据产品经理更合适。普通的产品经理,对前端、后端的技术栈尚未熟悉,何况日新月异的数据栈。这个岗位,适合对数据特别感兴趣,但是数理天赋不高的职场人,那么以沟通、项目管理和需求规划为能力,也不错。

(四)数据工程

数据工程师其实更偏技术,从职业道路上看,程序员走这条路更开阔。

在很多中小型的公司,一方面数据是无序的、缺失的、原始的,另外一方面各种业务报表又嗷嗷待哺。没办法,分析师只能自己撸起袖子,一个人当三个人用。兼做数据清洗+ETL+BI。

经历过的大概都懂,数据分析踏上数据工程的不归路如下:

每天都要从五六张表上join,那么不妨加工成一张中间表;
ETL的依赖关系越来越复杂,尝试用kettle/airflow等框架搞定,弄个DAG美滋滋;
运营部门的周报次次都要这几个指标,看看能否做一个自动化BI;
数据量逐日增多,最近T+1的日报需要几个小时完成,研究下查询语句的优化;
查询语句的优化空间也不大了,开始迁移到Hadoop/Spark分布式平台,新技术栈的学习;
新平台,原有的工具也不管用了,某大牛说apache上有工具能解决这个问题,于是阅读文档;
公司部署了私有化的埋点采集,数据缺失比较厉害,业务部门天天骂娘,继续埋Flume/Kafka的坑;
等等…

如果分析师在技术方面的灵性不错,那么技能点会往技术栈方向迁移。从最初的SQL,到了解Hadoop集群、了解presto/impala/spark、了解ELK、了解分布式存储和NoSQL……

这也是一个不错的发展方向,因为数据挖掘需要了解算法/模型,理论知识要求过高,不少硕士和博士还过来抢饭碗,自己不擅长容易遇到天花板。选择更底层的工程实现和架构,也是出路,薪资也不会低于数据挖掘/算法专家。

部分归属到技术部的数据分析师,虽然Title叫数据分析(其实应该叫数据分析开发工程师),很多工作也是围绕ETL/DW/BI进行,那么这就是标准的数据工程路线。

部分公司会将机器学习模型的部署和实现交给数据工程团队,这要求数据工程师熟悉sparkMLlib、Mahout此类框架。

数据工程师,可以从数据分析师的SQL技能,往数据的底层收集、存储、计算、运维拓展。往后发展则是数据总监、或者数据架构师。因为数据分析出身,与纯技术栈的程序员比,思考会更贴合业务,比如指标背后的数据模型,但是技术底子的薄弱需要弥补。

另外,DBA、BI这些传统的数据库从业者,也是能按这条路线进阶,或者选择数据产品经理方向。

职位总结

以上四个岗位就是数据分析的发展方向,它们互有关联,如果从整个架构来看,

我们可以将其划分为

数据收集—数据加工—数据运营—数据触达。

数据收集负责收集各种各样的原始数据,比如用户何时何地做了什么事情。它依赖于埋点采集系统,而埋点采集,需要收集什么类型数据,往往由数据产品经理确定规范(还是看公司,数据运营和数据分析师也能负责)。

收集上来的数据需要存储,往往因为高吞吐量,需要保证数据和日志的稳定性,会采用Flume+Kafka,如果有实时统计要求,也得考虑流数据。这块则是数据工程的范畴,包括原始数据的再加工,数据清洗,都是专门的数据团队完成。

当获得数据后,首先第一点是讲各种明细数据加工业务指标,没有指标不成方圆,这里由数据分析师定义的。有了指标,配合各种数据产品输出,如用户画像用户标签、BI报表,这些数据产品都由数据PM统筹排期…另外一方面,数据挖掘工程师和算法专家则凭各种数据建立模型,进行实时或离线运算。

模型可能会预测用户会不会购买某个商品,可能是做出一系列的推荐,可能是判断用户属于哪个类型,不一而足。

更上面一层是业务相关,数据分析师会监控和分析BI上指标的波动、数据挖掘工程是通过用户反馈数据,衡量算法的优劣、数据PM按AB测试的结果改进产品。数据工程师保证系统的稳定。

所有层次一环扣一环,每个岗位在其中都发挥特有的作用。

数据工程偏底层技术,
数据分析偏上层业务,
数据挖掘和数据产品处于中间形态。

不同公司虽然业务形态不一致,架构会有差异,但是职责不会偏差太大。这也是数据分析为什么会有四个方向。

参考:

博客

我所理解的互联网BI数据分析师
增长黑客,看这篇就够了。
数据分析师职业规划——数据分析师这个岗位,可能近几年会消亡
超详细的数据分析职业规划

埋点相关:

数据埋点采集的那些事儿:https://zhuanlan.zhihu.com/p/141693997
字节跳动大规模埋点数据治理最佳实践:https://zhuanlan.zhihu.com/p/396582298
友盟:https://www.umeng.com/page/z/maidian

Google Analysis:Google Analytics(埋点) 使用指南
百度统计:https://tongji.baidu.com/web5/welcome/products?flag=0
talking data:https://www.talkingdata.com/
growing io:https://www.growingio.com/。

书籍推荐:

《谁说菜鸟不会数据分析》
《深入浅出数据分析》
《赤裸裸的统计学》
《增长黑客》
《精益数据分析》
《运营之光》

常用网站:

数据分析网:https://www.afenxi.com/
艾媒网-全球新经济行业数据分析报告发布平台:https://www.iimedia.cn/
人人都是产品经理:http://www.woshipm.com/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1470486.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Jitsi Meet 大型视频会议调优方案

jitsi meet 大型视频会议调优方案 在举办一些大型会议的时候,比如100个人会议,为了节约宽带和节省资源,我们并不会选择传输全部的音视频资源。 举个例子,比如100个人线下会议,如果大家都说话的情况下,大家要么听不清,要么听得是声音最大的那几个人。 视频会议也可以借…

数据结构之顺序表链表

一、线性表 线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列、字符串... 线性表在逻辑上是线性结构,也就说是连续的一条直…

模型 OIIC(目标、障碍、洞察、挑战)

系列文章 分享 模型,了解更多👉 模型_总纲目录。沟通方案工具。 1 OIIC(目标、障碍、洞察、挑战)模型的应用 1.1 OIIC 驱动的汽车配件渠道优化 一家知名的汽车配件制造商,旗下品牌拥有众多产品,其销售渠道广泛,不仅在…

2024Node.js零基础教程(小白友好型),nodejs新手到高手,(九)NodeJS入门——http模块

060_http模块_网页URL之绝对路径 hello,大家好,这一个小题的话我们来补充一个之前学习过的内容,就是网页当中的URL,咱们这个小题的话主要是来说一下绝对路径,有同学可能会说,这这这,不对劲&…

access数据库泄露与IIS短文件名利用

access数据库 Microsoft Office Access是微软把 数据库引擎 的图形用户界面和 软件开发工具 结合在一起的一个 数据库管理系统 它的数据库是没有库名的,都是表名。 (借用别的up的图)是不是感觉有点像excel access数据库的后缀是.mdb access数据库泄露漏洞 如果…

面向对象设计模式

一、单例 一个类只能创建唯一一个对象 利用限制构造、static完成 二、工厂模式 优势:规范接口(纯虚函数);实现多态(虚函数表);继承 1、简单工厂 一个工厂创建所有产品。 返回基类指针可…

你要不要搞副业

最近看到了几个网友关于年轻人要不要搞副业的一点讨论,学习到了很多。整理分享如下: plantegg 你要不要搞副业? 最近网上看到很多讨论搞副业和远程工作的,我也说点自己的经验看法 当然这完全是出于个人认知肯定不是完全对的、也…

Bluejay电调固件介绍和烧录Bluejay电调固件到BLHeli_S电调的方法

Bluejay电调固件介绍和烧录Bluejay电调固件到BLHeli_S电调的方法 Bluejay电调固件基本介绍Bluejay电调固件特点烧录Bluejay固件准备材料烧录过程 电调调参参数说明 Bluejay电调固件基本介绍 Bluejay是一种数字电调固件,用于控制多旋翼无人机中的无刷电机。 该电调固…

蓝桥杯算法赛 第 6 场 小白入门赛 解题报告 | 珂学家 | 简单场 + 元宵节日快乐

前言 整体评价 因为适逢元宵节,所以这场以娱乐为主。 A. 元宵节快乐 题型: 签到 节日快乐,出题人也说出来自己的心愿, 祝大家AK快乐! import java.util.Scanner;public class Main {public static void main(String[] args) {System.out.println(&qu…

QT day3 作业2.22

思维导图: 作业: 完善对话框,点击登录对话框,如果账号和密码匹配,则弹出信息对话框,给出提示”登录成功“,提供一个Ok按钮,用户点击Ok后,关闭登录界面,跳转到…

微信小程序自制动态导航栏

写在前面 关于微信小程序导航栏的问题以及解决办法我已经在先前的文章中有提到,点击下面的链接即可跳转~ 🤏微信小程序自定义的导航栏🤏 在这篇文章中我们需要做一个这样的导航栏!先上效果图 👇👇&#x1f…

如何将实景三维倾斜模型叠加到三维地球上?

​ 通过以下方法可以将实景三维倾斜模型叠加到三维地球上。 方法/步骤 下载三维地图浏览器 http://www.geosaas.com/download/map3dbrowser.exe,安装完成后桌面上出现”三维地图浏览器“图标。 2、双击桌面图标打开”三维地图浏览器“ 3、点击“倾斜模型”…

物麒平台根据入耳出耳状态使能或禁止触摸按键实现方法

是否需要申请加入数字音频系统研究开发交流答疑群(课题组)?可加我微信hezkz17, 本群提供音频技术答疑服务,+群赠送语音信号处理降噪算法,蓝牙耳机音频,DSP音频项目核心开发资 料, 1 消息发送 2 消息处理 3 宏开关 4 代码 #include "app_main.h" #include &q…

Vue.js+SpringBoot开发生活废品回收系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容三、界面展示3.1 登录注册3.2 资源类型&资源品类模块3.3 回收机构模块3.4 资源求购/出售/交易单模块3.5 客服咨询模块 四、免责说明 一、摘要 1.1 项目介绍 生活废品回收系统是可持续发展的解决方案,旨在鼓…

FreeRTOS学习第8篇--同步和互斥操作引子

目录 FreeRTOS学习第8篇--同步和互斥操作引子同步和互斥概念实现同步和互斥的机制PrintTask_Task任务相关代码片段CalcTask_Task任务相关代码片段实验现象本文中使用的测试工程 FreeRTOS学习第8篇–同步和互斥操作引子 本文目标:学习与使用FreeRTOS中的同步和互斥操…

【vue3语法】开发使用创建项目等

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、vue3创建vue3v2函数式、v3组合式api响应式方法ref、reactive计算属性conputed监听属性wacthvue3 选项式生命周期父子通信父传子defineProps编译宏 子传父de…

linux 0.11 调试c代码

我们可以通过实验楼实验环境 来调试linux0.11的c代码。 cd ~/oslab/ tar -zxvf hit-oslab-linux-20110823.tar.gz -C ~ cd ~/oslab/linux-0.11/ make cd ~/oslab/ nohup ./dbg-c & nohup terminator & ls在新的窗口执行 ./rungdb,进入调试状态。 输入 set disassemb…

三 . 运算符和流程控制——Java基础篇

三 . 运算符和流程控制 1. 运算符 1 . 赋值运算符 1.2.1 基本语法 符号: 当“”两侧数据类型不一致时,可以使用自动类型转换或使用强制类型转换原则进行处理。支持连续赋值。 扩展赋值运算符: 、 -、*、 /、% 赋值运算符符号解释将符号左…

三、矩阵基本知识

目录 1. 理解 2、矩阵的直观感受 3、矩阵与向量 1. 理解 ①矩阵是一个向量组,由许多 行向量 和 纵向量 组成。 ②矩阵方程求解 用增广矩阵初等变换化为 E 。齐次/非齐次方程组 的解用 初等变化 化为 行最简阶梯型。 ③初步认为由多元一次方程组的系数组成&…

谈谈Redis的哈希槽和一致性哈希

一 . 前言 在 Redis 集群里面主要涉及到两种 Hash 算法 : 一种是一致性哈希 , 这种算法在 适用dis Cluster方案中并没有实现,主要在外部的代理模式 (Twemproxy)一种是 Slot 哈希槽算法 ,这种算法就是 Cluster 的核心算法所以谈到这个问题的时候,不能只讲一部分。在 Red…