计算机体系架构初步入门

news2024/11/20 0:26:58

🎬个人简介:一个全栈工程师的升级之路!
📋个人专栏:高性能(HPC)开发基础教程
🎀CSDN主页 发狂的小花
🌄人生秘诀:学习的本质就是极致重复!

目录

1 计算机五大组成

1.1 CPU

1.1.1 CPU的核心

1.2 CPU工作原理

2 计算机存储体系结构

2.1 存储层次

2.2 CPU访问各个存储系统的访问时间


1 计算机五大组成

        控制器,是计算机的控制系统;

        运算器,是计算机的运算系统,Alu;

        存储器,是计算机存储系统,内存、硬盘;

        输入设备,是向计算机输入数据和信息的设备,包括键盘、鼠标、摄像头、触摸屏等;

        输出设备,包括显示器、音响、打印机等。

        cpu=控制器+运算器

        电子计算机三大核心部件就是CPU、内部存储器、输入/输出设备。中央处理器的功效主要为处理指令、执行操作、控制时间、处理数据。

1.1 CPU

        中央处理器(Central Processing Unit,简称CPU)作为计算机系统的运算和控制核心,是信息处理、程序运行的最终执行单元。CPU自产生以来,在逻辑结构、运行效率以及功能外延上取得了巨大发展。

1.1.1 CPU的核心

运算器

运算器是指计算机中进行各种算术和逻辑运算操作的部件, 其中算术逻辑单元是中央处理核心的部分。

(1)算术逻辑单元(ALU)。算术逻辑单元是指能实现多组 算术运算与逻辑运算的组合逻辑电路,其是中央处理中的重要组成部分。算术逻辑单元的运算主要是进行二位元算术运算,如加法、减法、乘法。在运算过程中,算术逻辑单元主要是以计算机指令集中执行算术与逻辑操作,通常来说,ALU能够发挥直接读入读出的作用,具体体现在处理器控制器、内存及输入输出设备等方面,输入输出是建立在总线的基础上实施。输入指令包含一 个指令字,其中包括操作码、格式码等。 [2]

(2)中间寄存器(IR)。其长度为 128 位,其通过操作数来决定实际长度。IR 在“进栈并取数”指令中发挥重要作用,在执行该指令过程中,将ACC的内容发送于IR,之后将操作数取到ACC,后将IR内容进栈。

(3)运算累加器(ACC)。当前的寄存器一般都是单累加器,其长度为128位。对于ACC来说,可以将它看成可变长的累加器。在叙述指令过程中,ACC长度的表示一般都是将ACS的值作为依据,而ACS长度与 ACC 长度有着直接联系,ACS长度的加倍或减半也可以看作ACC长度加倍或减半。

(4)描述字寄存器(DR)。其主要应用于存放与修改描述字中。DR的长度为64位,为了简化数据结构处理,使用描述字发挥重要作用。

(5)B寄存器。其在指令的修改中发挥重要作用,B 寄存器长度为32位,在修改地址过程中能保存地址修改量,主存地址只能用描述字进行修改。指向数组中的第一个元素就是描述字, 因此,访问数组中的其它元素应当需要用修改量。对于数组成员来说,其是由大小一样的数据或者大小相同的元素组成的,且连续存储,常见的访问方式为向量描述字,因为向量描述字中的地址为字节地址,所以,在进行换算过程中,首先应当进行基本地址 的相加。对于换算工作来说,主要是由硬件自动实现,在这个过程中尤其要注意对齐,以免越出数组界限。

控制器

控制器是指按照预定顺序改变主电路或控制电路的接线和 改变电路中电阻值来控制电动机的启动、调速、制动与反向的主令装置。控制器由程序状态寄存器PSR,系统状态寄存器SSR, 程序计数器PC,指令寄存器等组成,其作为“决策机构”,主要任务就是发布命令,发挥着整个计算机系统操作的协调与指挥作用。 控制的分类主要包括两种,分别为组合逻辑控制器、微程序控制器,两个部分都有各自的优点与不足。其中组合逻辑控制器结构相对较复杂,但优点是速度较快;微程序控制器设计的结构简单,但在修改一条机器指令功能中,需对微程序的全部重编。 

1.2 CPU工作原理

冯诺依曼体系结构是现代计算机的基础。在该体系结构下,程序和数据统一存储,指令和数据需要从同一存储空间存取,经由同一总线传输,无法重叠执行。根据冯诺依曼体系,CPU的工作分为以下 5 个阶段:取指令阶段、指令译码阶段、执行指令阶段、访存取数和结果写回。

取指令(IF,instruction fetch),即将一条指令从主存储器中取到指令寄存器的过程。程序计数器中的数值,用来指示当前指令在主存中的位置。当一条指令被取出后,程序计数器(PC)中的数值将根据指令字长度自动递增。

指令译码阶段(ID,instruction decode),取出指令后,指令译码器按照预定的指令格式,对取回的指令进行拆分和解释,识别区分出不同的指令类别以及各种获取操作数的方法。现代CISC处理器会将拆分已提高并行率和效率。

执行指令阶段(EX,execute),具体实现指令的功能。CPU的不同部分被连接起来,以执行所需的操作。

访存取数阶段(MEM,memory),根据指令需要访问主存、读取操作数,CPU得到操作数在主存中的地址,并从主存中读取该操作数用于运算。部分指令不需要访问主存,则可以跳过该阶段。 

结果写回阶段(WB,write back),作为最后一个阶段,结果写回阶段把执行指令阶段的运行结果数据“写回”到某种存储形式。结果数据一般会被写到CPU的内部寄存器中,以便被后续的指令快速地存取;许多指令还会改变程序状态字寄存器中标志位的状态,这些标志位标识着不同的操作结果,可被用来影响程序的动作。

在指令执行完毕、结果数据写回之后,若无意外事件(如结果溢出等)发生,计算机就从程序计数器中取得下一条指令地址,开始新一轮的循环,下一个指令周期将顺序取出下一条指令。 许多复杂的CPU可以一次提取多个指令、解码,并且同时执行。

2 计算机存储体系结构

2.1 存储层次

存储器是分层次的,离CPU越近的存储器,速度越快,每字节的成本越高,同时容量也因此越小。寄存器速度最快,离CPU最近,成本最高,所以个数容量有限,其次是高速缓存(缓存也是分级,有L1,L2等缓存),再次是主存(普通内存),再次是本地磁盘。

如下:CPU->L1 Cache(L1 D-cache,L1 I-Cache)->L2 Cache->L3 Cache

        空间越来越大,价格越来越便宜,速度越越慢,如何提高Cache命中率是性能优化的重要指标

比如我的PC的L1 Cache:32k -> L2 Cache:256k -> L3 Cache:8192k

2.2 CPU访问各个存储系统的访问时间

🌈我的分享也就到此结束啦🌈
如果我的分享也能对你有帮助,那就太好了!
若有不足,还请大家多多指正,我们一起学习交流!
📢未来的富豪们:点赞👍→收藏⭐→关注🔍,如果能评论下就太惊喜了!
感谢大家的观看和支持!最后,☺祝愿大家每天有钱赚!!!欢迎关注、关注!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1469421.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring 中 ApplicationContext 和 BeanFactory 的区别有哪些

先看一张类图: 区别: 1:包目录不同: spring-beans.jar 中 org.springframework.beans.factory.BeanFactory spring-context.jar 中 org.springframework.context.ApplicationContext 2:国际化: BeanFacto…

c++之ini配置文件的详细解析

文章目录 ini文件概要代码实例分析小结 ini文件概要 ini文件是一种系统配置文件,它有特定的格式组成。通常做法,我们读取ini文件并按照ini格式进行解析即可。在c语言中,提供了模板类的功能,所以我们可以提供一个更通用的模板类来解…

【线程池项目(二)】线程池FIXED模式的实现

在上一篇【线程池项目(一)】项目介绍和代码展示 中,我们展示了线程池的两个版本实现,它们的代码在具体的实现细节上是优化过了的。下文提供的代码并非完整,也有很多地方尚需改善,但这些差异对理解整个项目而…

IT廉连看——C语言——分支语句

IT廉连看—分支语句 一、什么是语句 C语句可分为以下五类: 表达式语句 函数调用语句 控制语句 复合语句 空语句 本周后面介绍的是控制语句。 控制语句用于控制程序的执行流程,以实现程序的各种结构方式,它们由特定的语句定义符组成&…

字符串(算法竞赛)--字典树Trie与最大异或对

1、B站视频链接&#xff1a;F06 字典树(Trie)_哔哩哔哩_bilibili 题目链接&#xff1a;【模板】字典树 - 洛谷 #include <bits/stdc.h> using namespace std; const int N100010; int n; char s[N]; int ch[N][26];//ch[0][2]1表示0号节点通过c边走到了节点1 int cnt[…

2024最新前端面试题

数组是属于Object类型的&#xff0c;也就是引用类型&#xff0c;所以不能使用 typeof 来判断其具体类型。下面这些方法是判断数组的几种方法&#xff1a; 1、instanceof运算符 主要是判断某个实例&#xff08;arr&#xff09;是否属于某个对象。 let arr [1,2,3]; console.l…

eclipse中open Type 、 open type in Hierachy、open Resource的区别

目录 场景&#xff1a; open Type open Resource open type in Hierachy 场景&#xff1a; 在项目中想要研究底层代码&#xff0c;经常要用eclipse看依赖jar包的类&#xff0c;比如spring的源码中AbstractApplicationContext类CTLSHIFTT用的少&#xff0c;经常用的CTLSHIR…

给大家分享一款小程序:AI一秒修图

AI一秒修图 照片修复的AI助手特点&#xff1a;Demo&#xff08;1.选择图片 2.涂抹遮罩 3.消除&#xff09;Product Roadmap (版本演进)Contact-联系我们Reference 照片修复的AI助手 照片修复小小助手是一款快速P图微信小程序&#xff0c;用来消除图片中指定的人和物&#xff…

[算法沉淀记录] 排序算法 —— 冒泡排序

排序算法 —— 冒泡排序 基本概念 冒泡排序是一种简单的排序算法。它重复地遍历要排序的列表&#xff0c;一次比较两个元素&#xff0c;并交换它们的位置&#xff0c;如果它们不是按照升序排列的。这步遍历是重复进行的&#xff0c;直到没有再需要交换&#xff0c;也就是说该…

【设计模式】策略模式及函数式编程的替代

本文介绍策略模式以及使用函数式编程替代简单的策略模式。 策略模式 在策略模式&#xff08;Strategy Pattern&#xff09;中一个类的行为或其算法可以在运行时更改。这种类型的设计模式属于行为型模式。 在策略模式定义了一系列算法或策略&#xff0c;并将每个算法封装在独立…

介绍 PIL+IPython.display+mtcnn for 音视频读取、标注

1. nn.NLLLoss是如何计算误差的? nn.NLLLoss是负对数似然损失函数&#xff0c;用于多分类问题中。它的计算方式如下&#xff1a;首先&#xff0c;对于每个样本&#xff0c;我们需要将其预测结果通过softmax函数转换为概率分布。softmax函数可以将一个向量映射为一个概率分布&…

Three.js加载PLY文件

这是官方的例子 three.js webgl - PLY 我在Vue3中使用&#xff0c;测试了好久始终不显示点云数据。在网上查询后发现ply文件要放置在public目录下才行 <el-row><el-button type"primary" class"el-btn" click"IniThree1">PLY</…

【C++初阶】--类和对象(下)

目录 一.const成员 1.权限放大问题 2.权限的缩小 二.再谈构造函数 1.构造函数体赋值 2.初始化列表 (1)概念 (2)使用 ①在对象实例化过程中&#xff0c;成员变量先依次进行初始化 ②再进行函数体内二次赋值 3.explicit关键字 (1)C为什么要存在自动隐式类型转换…

Java之线程同步、synchronized用法及原理

线程的同步 场景1&#xff1a;两个线程同时访问一个变量&#xff0c;一个线程自增&#xff0c;一个线程自减 public class thread11 {public static void main(String[] args) throws InterruptedException {Thread thread1 new AddThread();Thread thread2 new DecThread(…

编曲学习:高叠和弦 挂留和弦 和弦实战应用

高叠和弦 挂留和弦 和弦实战应用小鹅通-专注内容付费的技术服务商https://app8epdhy0u9502.pc.xiaoe-tech.com/live_pc/l_65d4826fe4b04c10a1310517?course_id=course_2XLKtQnQx9GrQHac7OPmHD9tqbv 七和弦 以三和弦举例,三和弦上面叠一个三度的音,就变成了七和弦。 从下到…

opencv python投影变换效果

变换原理&#xff1a; https://www.cnblogs.com/txwtech/p/18024547 python示范代码&#xff1a; src2原图&#xff0c;4个坐标点 dst2转换后&#xff0c;4个坐标点 p_touyin cv2.getPerspectiveTransform(src2,dst2) #计算投影变换矩阵 #利用矩阵值进行图像投影变换 r…

全流程点云机器学习(二)使用PaddlePaddle进行PointNet的机器学习训练和评估

前言 这不是高支模项目需要嘛&#xff0c;他们用传统算法切那个横杆竖杆流程复杂耗时很长&#xff0c;所以想能不能用机器学习完成这些工作&#xff0c;所以我就来整这个工作了。 基于上文的数据集切分 &#xff0c;现在来对切分好的数据来进行正式的训练。 本系列文章所用的…

【Pytorch深度学习开发实践学习】B站刘二大人课程笔记整理lecture11 Advanced_CNN 实现GoogleNet和ResNet

【Pytorch深度学习开发实践学习】B站刘二大人课程笔记整理lecture11 Advanced_CNN 代码&#xff1a; Pytorch实现GoogleNet import torch from torchvision import datasets, transforms from torch.utils.data import DataLoader import torch.nn as nn import torch.nn.fun…

内核解读之内存管理(8)什么是page cache

文章目录 0. 文件系统的层次结构1.什么是page cache2.感观认识page cache3. Page Cache的优缺点3.1 Page Cache 的优势3.2 Page Cache 的劣势 0. 文件系统的层次结构 在了解page cache之前&#xff0c;我们先看下文件系统的层次结构。 1 VFS 层 VFS &#xff08; Virtual Fi…

【Ubuntu】解决Ubuntu 22.04开机显示器颜色(高对比度/反色)异常的问题

使用Ubuntu 22.04时强制关机了一下&#xff08;make -j16把电脑搞崩了&#xff09;&#xff0c;开机后系统显示的颜色异常&#xff0c;类似高对比度或反色&#xff0c;如下图。看着很难受&#xff0c;字体也没办法辨认。还好之前遇到过类似的问题&#xff0c;应该是一个配置文件…