GPT Pilot - 编写 95% 代码的开发工具!

news2025/1/12 3:03:34

在这篇博客介绍了GPT-pilot的研发细节,原作者将探讨GPT Pilot的技术内核 —— 一款基于GPT-4编写的开发工具,可以生成生产使用代码的应用。

你有没有想过,95%的应用代码,可以由AI编写,就像《钢铁侠》里的贾维斯一样?

那么,如何实现这个目标呢?

我找到了基于GPT-4开发一个工具——GPT Pilot,能在开发人员的监督下编写出可扩展的应用

我将向你展示GPT Pilot背后的主要思想,它所依赖的关键概念,以及到编码阶段的工作流程。

目前,GPT Pilot处于初级阶段,只能创建简单的Web应用。然而,我相信之后这将全面覆盖到各种领域。

GPT Pilot是如何工作的?

1、首先,你输入要构建的应用的描述。

然后,GPT Pilot配合LLM(目前为GPT-4)明确应用需求,并最终编写代码。它使用多种AI代理(AI Agents) 来模仿开发机构的工作流程。

在你描述应用后,产品负责人Agent会解析业务规范并向你提问以澄清任何不明确的地方。然后,软件架构师Agent会解析技术需求,并列出将用于构建应用的技术。然后,架构师Agent会根据架构在机器上设置环境。 然后,技术团队Agent将应用开发过程分解为开发任务,每个任务需要具备:

  • 任务的描述(这是开发人员代理稍后创建代码的主要描述)
  • 需要编写的自动化测试的描述,以便GPT Pilot可以遵循TDD(测试驱动开发)原则
  • 人类验证的描述,基本上就是你作为人类开发人员,如何检查任务是否成功实施

最后,程序员Agent会逐一接手任务,并开始为应用编写代码。开发者将每个任务分解为较小的步骤,这些是较低级别的技术要求,可能不需要人类审查或自动化测试(例如安装某个包)。

GPT Pilot的三大特点

开发者需要参与创建应用的过程

正如我之前提到的,我认为我们距离一个能通过CLI独立运行并创建任何应用的LLM还有很远的路要走。

然而,GPT-4在编写代码方面表现得出奇地好。我一直在使用ChatGPT来加快我的开发过程 - 特别是当我需要在新的技术上工作,或者需要创建一个独立的脚本时。

我第一次意识到它的强大是在几个月前,我用ChatGPT花了2小时创建了一个Redis代理,通常这会花费20小时从头开发。我在这篇文章中写了整个过程。 因此,为了使AI能生成一个完全工作的应用,我们需要让它紧密地与开发者合作,开发者会监督整个开发过程,并充当技术团队的领导,而AI会写大部分的代码。因此,开发人员需要能在任何时候修改代码,而GPT Pilot需要继续使用这些更改(例如添加API密钥或在AI卡住的情况下修复问题)。

以下是发展者可以参与到开发过程中的地方:

  • 每个开发任务完成后,开发人员应该审查它,确保它按预期工作(这是你通常会提交最新更改的时刻)
  • 在每个失败的测试后或者运行的命令后,可能对开发者来说更容易进行调试(例如,如果你的机器上的一个端口被保留,但生成的应用试图使用它,则你需要硬编码另一个端口)
  • 如果AI没有访问外部服务的权限 - 例如,你可能需要从环境中获取并添加API密钥

应用需要分步编码

假设你想创建一个简单的应用,你知道所有你需要编写的内容,并且在你的头脑中存有整个架构。即使在这种情况下,你也不会完全地编写、同时运行和一次性调试所有问题。相反,你会把应用开发分解为更小的任务,执行其中一个(如添加路由),运行它,调试,然后再进行下一个任务。这样,你可以随着问题的出现解决问题。 AI编写代码的情况也应该是这样。

正如人类一样,它肯定会犯错误,因此为了让它方便地进行调试,并且让开发人员理解生成代码中发生了什么,AI不应该一口气吐出整个代码库。相反,应该像开发人员一样,逐步生成和调试应用 - 例如设置路由,添加数据库连接等等。

其他的代码生成器,如Smol Developer和GPT Engineer,工作方式是你写一个关于你想要构建的应用的提示,他们将尝试编写出整个应用,一次性给你整个代码库。

虽然AI很强大,但离一次尝试就能编写出完全工作的应用还很远,所以这些工具给你的代码库是非常难以理解的,更重要的是,要进行调试无比困难。 我认为,GPT Pilot如果能逐步创建应用,那么AI和监督它的开发人员将能够更容易地修复问题,整个开发过程将流畅得多。

GPT Pilot需要能进行扩展

GPT Pilot必须能创建大型生产可用的应用,而不仅限于小型应用,其中整个代码库可以装入LLM的上下文中。问题在于,LLM的所有学习都是在上下文中进行的

或许有一天,LLM可以针对每个具体的项目进行微调,但是现在,这看起来像是一个非常缓慢和多余的过程。 GPT Pilot通过上下文回溯,递归对话和TDD来解决这个问题。

  • 上下文回溯 上下文回溯背后的思想相对简单 - 对于解决每个开发任务,第一条消息到LLM的上下文大小必须相对一样。例如,在实现开发任务#5时,第一条LLM消息的上下文大小必须和任务#50的第一条消息的上下文大小大体相同。因此,每个任务完成后,需要回溯到第一条消息。

对于GPT Pilot来说,要任务#5和#50相同,它必须理解到目前为止的代码,以及所有已编写代码背后的业务上下文,这样,它才能创建针对当前任务的新代码,而不是重写整个应用。 但本质上,当GPT Pilot创建代码时,它会为它编写的每个代码块制作伪代码,以及创建的每个文件和文件夹的描述。所以,当我们需要实现每个任务的时候,在一个单独的对话中,我们向LLM展示最新的文件夹/文件结构,它只选择与当前任务相关的代码,然后,我们将只添加该代码到有同样任务需要的实际执行任务的原始对话。

  • GPT Pilot - 递归对话 递归对话是用LLM设置起来的对话,它们是递归使用的方式。例如,如果GPT Pilot检测到一个错误,它需要调试它,但让我们设想在调试过程中出现了另一个错误。那么,GPT Pilot需要先停止调试第一个问题,解决第二个问题,然后回来继续修复第一个问题。对我来说,这是一个重要的概念,我相信,它们需要像这样工作才能使AI构建大型和可扩展的应用。通过回溯上下文和分别说明每个错误,一旦完成最深层的错误修复,我们就会上升在递归中,继续修复错误,直到整个递归都完成。

测试驱动开发(TDD) 为了让GPT Pilot扩展代码库,提高质量,改变需求,并添加新功能,它需要能够在不破坏之前编写的代码的前提下生成新代码。达到这个目标的最好方法就是遵循TDD方法。对于GPT Pilot编写的所有代码,它都需要编写测试,检查代码是否按照预期工作,以便每次进行新的更改时,可以运行所有回归测试以检查是否出现任何破坏。

最后

为了帮助大家更好的学习人工智能,这里给大家准备了一份人工智能入门/进阶学习资料,里面的内容都是适合学习的笔记和资料,不懂编程也能听懂、看懂,所有资料朋友们如果有需要全套人工智能入门+进阶学习资源包,可以在评论区或扫.码领取哦)~

在线教程

  • 麻省理工学院人工智能视频教程 – 麻省理工人工智能课程
  • 人工智能入门 – 人工智能基础学习。Peter Norvig举办的课程
  • EdX 人工智能 – 此课程讲授人工智能计算机系统设计的基本概念和技术。
  • 人工智能中的计划 – 计划是人工智能系统的基础部分之一。在这个课程中,你将会学习到让机器人执行一系列动作所需要的基本算法。
  • 机器人人工智能 – 这个课程将会教授你实现人工智能的基本方法,包括:概率推算,计划和搜索,本地化,跟踪和控制,全部都是围绕有关机器人设计。
  • 机器学习 – 有指导和无指导情况下的基本机器学习算法
  • 机器学习中的神经网络 – 智能神经网络上的算法和实践经验
  • 斯坦福统计学习

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

请添加图片描述

人工智能书籍

  • OpenCV(中文版).(布拉德斯基等)
  • OpenCV+3计算机视觉++Python语言实现+第二版
  • OpenCV3编程入门 毛星云编著
  • 数字图像处理_第三版
  • 人工智能:一种现代的方法
  • 深度学习面试宝典
  • 深度学习之PyTorch物体检测实战
  • 吴恩达DeepLearning.ai中文版笔记
  • 计算机视觉中的多视图几何
  • PyTorch-官方推荐教程-英文版
  • 《神经网络与深度学习》(邱锡鹏-20191121)

  • 在这里插入图片描述
    😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

第一阶段:零基础入门(3-6个月)

新手应首先通过少而精的学习,看到全景图,建立大局观。 通过完成小实验,建立信心,才能避免“从入门到放弃”的尴尬。因此,第一阶段只推荐4本最必要的书(而且这些书到了第二、三阶段也能继续用),入门以后,在后续学习中再“哪里不会补哪里”即可。

第二阶段:基础进阶(3-6个月)

熟读《机器学习算法的数学解析与Python实现》并动手实践后,你已经对机器学习有了基本的了解,不再是小白了。这时可以开始触类旁通,学习热门技术,加强实践水平。在深入学习的同时,也可以探索自己感兴趣的方向,为求职面试打好基础。

第三阶段:工作应用

这一阶段你已经不再需要引导,只需要一些推荐书目。如果你从入门时就确认了未来的工作方向,可以在第二阶段就提前阅读相关入门书籍(对应“商业落地五大方向”中的前两本),然后再“哪里不会补哪里”。

在这里插入图片描述
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1469063.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C# 中 SQLite 查询数据库表中字段(列)是否存在的方法

查询SQLite数据库表中字段(列)存在的方法 使用SQL语句为:PRAGMA table_info([DeviceTrees]); 其中“DeviceTrees”为数据库表的名称。 使用SQLite Expert Professional工具,查看该语句是否起作用,这里使用的版本是…

基于Java SSM框架实现问卷调查系统项目【项目源码】计算机毕业设计

基于java的SSM框架实现问卷调查系统演示 B/S结构 BROWSER/SERVER程序架构方式是使用电脑中安装的各种浏览器来进行访问和使用的,相比C/S的程序结构不需要进行程序的安装就可以直接使用。BROWSER/SERVER架构的运行方式是在远程的服务器上进行安装一个,然…

绿盾限制终端网络访问权限会恢复后,别的网站访问正常就是无法访问钉钉网站和下载东西

环境: Win10 专业版 钉钉7.5.5 绿盾7.0 问题描述: 绿盾限制终端网络访问权限会恢复后,别的网站访问正常就是无法访问钉钉网站和下载东西 解决方案: 排查方法 1.重置浏览器或者更换浏览器测试(未解决&#xff09…

linux卸载mysql8重装5

目录 背景操作卸载重装配置启动 背景 在linux(阿里云ECS)安装部署Hive时初始化Hive元数据库,遇到报错前一天两三小时没解决,问题定位为mysql,次日打算重装 操作 卸载 停止 MySQL 服务 systemctl stop mysql yum卸载…

Map集合特点、遍历方式、TreeMap排序及Collections和Arrays

目录 ​编辑 一、集合框架 二、 Map集合 特点 遍历方式 HashMap与Hashtable的区别 TreeMap Collections Arrays 一、集合框架 二、 Map集合 Map集合是一种键值对的集合,其中每个键对应一个值。在Java中,Map接口定义了一种将键映射到值的数据结…

前后端分离vue.js+nodejs学生考勤请假系统 _fbo36

此系统设计主要采用的是nodejs语言来进行开发,采用vue框架技术,框架分为三层,分别是控制层Controller,业务处理层Service,持久层dao,能够采用多层次管理开发,对于各个模块设计制作有一定的安全性…

网络原理——HTTP

1. 什么是HTTP协议 HTTP是应用层的协议。Java最主要的应用场景是做网站,而网站由 后端(HTTP服务器) 和 前端(浏览器)组成,HTTP协议就是负责这里后端和前端的数据交互。 HTTP3.0 之前在传输层是通过 TCP传…

什么是智慧公厕?如何打造智慧公厕?

近年来,随着城市信息化建设的不断推进,智慧公厕的建设成为我国城市发展的重要一环。以智能化管理为核心,将公厕纳入互联互通的“智慧城市”大数据平台,使得公厕管理更加高效便捷,为市民提供更好的公共服务。本文将以智…

git最全总结

文章目录 Git 分布式版本控制工具内容1. 前言1.1 什么是Git1.2 使用Git能做什么 2. Git概述2.1 Git简介2.2 Git下载与安装 3. Git代码托管服务3.1 常用的Git代码托管服务3.2 码云代码托管服务3.2.1 注册码云账号3.2.2 登录码云3.2.3 创建远程仓库3.2.4 邀请其他用户成为仓库成员…

excel标记文本中的关键词加红加粗

任务: 有这么一张表,关键词为 word,文本内容为 text,现在想把 text 中的 word 标红加粗,如果数据量少,文本段手动标还可以,多起来就不太方便了 代码: import pandas as pd import x…

8-pytorch-损失函数与反向传播

b站小土堆pytorch教程学习笔记 根据loss更新模型参数 1.计算实际输出与目标之间的差距 2.为我们更新输出提供一定的依据(反向传播) 1 MSEloss import torch from torch.nn import L1Loss from torch import nninputstorch.tensor([1,2,3],dtypetorch.fl…

WEB相关工具(wget、curl、ab)

目录 一、wget 1、wget基本语法 2、wget帮助的更多选项 二、curl 1、curl基本语法 2、curl命令基本用法 2.1 curl伪装 2.2 提取状态码 2.3 提取本地IP地址 2.4 提取远端服务器IP地址 2.5 提取本地端口 2.6 提取远端服务器端口 三、压力测试工具 1、常用的httpd压…

数据结构与算法相关题解20240225

数据结构与算法相关题解20240225 一、58. 最后一个单词的长度二、48. 旋转图像三、69. x 的平方根四、50. Pow(x, n) 一、58. 最后一个单词的长度 简单 给你一个字符串 s,由若干单词组成,单词前后用一些空格字符隔开。返回字符串中 最后一个 单词的长度…

基于springboot+vue的租房管理系统(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…

快速查找/打开host文件的方法

hosts文件是一个没有扩展名的文件,主要作用是:保存与域名的映射关系。 配置格式: ip 域名 windows系统里的保存位置: C:\Windows\System32\drivers\etc 下面介绍快速打开的方法。 第一步 [winR]打开运行,输入下面的…

精品基于SpringBoot+Vue的常规应急物资管理系统

《[含文档PPT源码等]精品基于SpringBootVue的常规应急物资管理系统[包运行成功]》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程、包运行成功! 软件开发环境及开发工具: Java——涉及技术: 前端使用技术&#xff…

应用回归分析:贝叶斯回归

贝叶斯回归是一种统计方法,它利用贝叶斯定理来更新对回归参数的估计。这种方法不仅考虑了数据的不确定性,还考虑了模型参数的不确定性,为预测提供了一个更加全面的框架。在本文中,我们将深入探讨贝叶斯回归的基本概念、如何实现它…

Docker容器实战

"爱在,地图上,剥落~" Mysql 容器化安装 我们可以在 docker hub上,进入mysql的镜像仓库,找到适合的版本。 直接拉取镜像: docker pull mysql:latest 我们知道 msyql 的默认端口是 3306 ,而且有密码&#x…

ArcgisForJS如何将ArcGIS Server发布的点要素渲染为热力图?

文章目录 0.引言1.ArcGIS创建点要素2.ArcGIS Server发布点要素3.ArcgisForJS将ArcGIS创建的点要素渲染为热力图 0.引言 ArcGIS For JS 是一个强大的地理信息系统(GIS)工具,它允许开发者使用 JavaScript 语言来创建各种 GIS 应用。ArcGIS Ser…

2.5G/5G/10G高速率网络变压器(网络隔离变压器)产品介绍(1)

Hqst华轩盛(石门盈盛)电子导读:高速率/2.5G 的带POE插件(DIP)款千兆双口网络变压器2G54801DP特点 一 ﹑2.5G高速率网络变压器(网络隔离变压器):2G54801DP外观与尺寸 2G54801DP这颗产品尺寸为:长…