挑战杯 基于大数据的时间序列股价预测分析与可视化 - lstm

news2024/11/19 1:33:17

文章目录

  • 1 前言
  • 2 时间序列的由来
    • 2.1 四种模型的名称:
  • 3 数据预览
  • 4 理论公式
    • 4.1 协方差
    • 4.2 相关系数
    • 4.3 scikit-learn计算相关性
  • 5 金融数据的时序分析
    • 5.1 数据概况
    • 5.2 序列变化情况计算
  • 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 毕业设计 大数据时间序列股价预测分析系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 时间序列的由来

提到时间序列分析技术,就不得不说到其中的AR/MA/ARMA/ARIMA分析模型。这四种分析方法的共同特点都是跳出变动成分的分析角度,从时间序列本身出发,力求得出前期数据与后期数据的量化关系,从而建立前期数据为自变量,后期数据为因变量的模型,达到预测的目的。来个通俗的比喻,大前天的你、前天的你、昨天的你造就了今天的你。

2.1 四种模型的名称:

  • AR模型:自回归模型(Auto Regressive model);
  • MA模型:移动平均模型(Moving Average model);
  • ARMA:自回归移动平均模型(Auto Regressive and Moving Average model);
  • ARIMA模型:差分自回归移动平均模型。
  • AR模型:

如果某个时间序列的任意数值可以表示成下面的回归方程,那么该时间序列服从p阶的自回归过程,可以表示为AR§:

在这里插入图片描述
AR模型利用前期数值与后期数值的相关关系(自相关),建立包含前期数值和后期数值的回归方程,达到预测的目的,因此成为自回归过程。这里需要解释白噪声,白噪声可以理解成时间序列数值的随机波动,这些随机波动的总和会等于0,例如,某饼干自动化生产线,要求每包饼干为500克,但是生产出来的饼干产品由于随机因素的影响,不可能精确的等于500克,而是会在500克上下波动,这些波动的总和将会等于互相抵消等于0。

3 数据预览


import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

#准备两个数组
list1 = [6,4,8]
list2 = [8,6,10]

#分别将list1,list2转为Series数组
list1_series = pd.Series(list1) 
print(list1_series)
list2_series = pd.Series(list2) 
print(list2_series)

#将两个Series转为DataFrame,对应列名分别为A和B
frame = { 'Col A': list1_series, 'Col B': list2_series } 
result = pd.DataFrame(frame)

result.plot()
plt.show()

在这里插入图片描述

4 理论公式

4.1 协方差

首先看下协方差的公式:

在这里插入图片描述

在这里插入图片描述

4.2 相关系数

计算出Cov后,就可以计算相关系数了,值在-1到1之间,越接近1,说明正相关性越大;越接近-1,则负相关性越大,0为无相关性
公式如下:

在这里插入图片描述

4.3 scikit-learn计算相关性

在这里插入图片描述


#各特征间关系的矩阵图
sns.pairplot(iris, hue=‘species’, size=3, aspect=1)

在这里插入图片描述

Andrews Curves 是一种通过将每个观察映射到函数来可视化多维数据的方法。
使用 Andrews Curves 将每个多变量观测值转换为曲线并表示傅立叶级数的系数,这对于检测时间序列数据中的异常值很有用。


plt.subplots(figsize = (10,8))
pd.plotting.andrews_curves(iris, ‘species’, colormap=‘cool’)

在这里插入图片描述
这里以经典的鸢尾花数据集为例

setosa、versicolor、virginica代表了三个品种的鸢尾花。可以看出各个特征间有交集,也有一定的分别规律。


#最后,通过热图找出数据集中不同特征之间的相关性,高正值或负值表明特征具有高度相关性:

fig=plt.gcf()
fig.set_size_inches(10,6)
fig=sns.heatmap(iris.corr(), annot=True, cmap='GnBu', linewidths=1, linecolor='k', \
square=True, mask=False, vmin=-1, vmax=1, \
cbar_kws={"orientation": "vertical"}, cbar=True)

在这里插入图片描述

5 金融数据的时序分析

主要介绍:时间序列变化情况计算、时间序列重采样以及窗口函数

5.1 数据概况


import pandas as pd

tm = pd.read_csv('/home/kesci/input/gupiao_us9955/Close.csv')
tm.head()

在这里插入图片描述

数据中各个指标含义:

  • AAPL.O | Apple Stock
  • MSFT.O | Microsoft Stock
  • INTC.O | Intel Stock
  • AMZN.O | Amazon Stock
  • GS.N | Goldman Sachs Stock
  • SPY | SPDR S&P; 500 ETF Trust
  • .SPX | S&P; 500 Index
  • .VIX | VIX Volatility Index
  • EUR= | EUR/USD Exchange Rate
  • XAU= | Gold Price
  • GDX | VanEck Vectors Gold Miners ETF
  • GLD | SPDR Gold Trust

8年期间价格(或指标)走势一览图

在这里插入图片描述

5.2 序列变化情况计算

  • 计算每一天各项指标的差异值(后一天减去前一天结果)
  • 计算pct_change:增长率也就是 (后一个值-前一个值)/前一个值)
  • 计算平均计算pct_change指标
  • 绘图观察哪个指标平均增长率最高
  • 计算连续时间的增长率(其中需要计算今天价格和昨天价格的差异)

计算每一天各项指标的差异值(后一天减去前一天结果)

在这里插入图片描述

计算pct_change:增长率也就是 (后一个值-前一个值)/前一个值)

在这里插入图片描述

计算平均计算pct_change指标
绘图观察哪个指标平均增长率最高

在这里插入图片描述
除了波动率指数(.VIX指标)增长率最高外,就是亚马逊的股价了!贝佐斯简直就是宇宙最强光头强

计算连续时间的增长率(其中需要计算今天价格和昨天价格的差异)


#第二天数据
tm.shift(1).head()

#计算增长率
rets = np.log(tm/tm.shift(1))
print(rets.tail().round(3))

#cumsum的小栗子:
print('小栗子的结果:',np.cumsum([1,2,3,4]))

#增长率做cumsum需要对log进行还原,用e^x
rets.cumsum().apply(np.exp).plot(figsize=(10,6))

在这里插入图片描述
以上是在连续时间内的增长率,也就是说,2010年的1块钱,到2018年已经变为10多块了(以亚马逊为例)

(未完待续,该项目为demo预测部分有同学需要联系学长完成)

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1466744.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

K8S-001-Virtual box - Network Config

A. 配置两个IP, 一个连接内网,一个链接外网: 1. 内网配置(Host only, 不同的 virutal box 的版本可以不一样,这些窗口可能在不同的地方,但是配置的内容是一样的): 静态IP 动态IP 2. 外网(创建一个 Networ…

网络安全笔记总结

IAE引擎 1.深度检测技术--DFI和DPI技术 DFI和DPI都是流量解析技术,对业务的应用、行为及具体信息进行识别,主要应用于流量分析及流量检测。 DPI:深度包检测技术 DPI是一种基于应用层的流量检测和控制技术,对流量进行拆包&#x…

信号系统之傅里叶变换属性

1 傅里叶变换的线性度 傅里叶变换是线性的,即具有均匀性和可加性的性质。对于傅里叶变换家族的所有四个成员(傅里叶变换、傅里叶级数、DFT 和 DTFT)都是如此。 图 10-1 提供了一个示例,说明均匀性如何成为傅里叶变换的一个属性。…

第八篇【传奇开心果系列】python的文本和语音相互转换库技术点案例示例:Google Text-to-Speech虚拟现实(VR)沉浸式体验经典案例

传奇开心果博文系列 系列博文目录python的文本和语音相互转换库技术点案例示例系列 博文目录前言一、雏形示例代码二、扩展思路介绍三、虚拟导游示例代码四、交互式学习示例代码五、虚拟角色对话示例代码六、辅助用户界面示例代码七、实时语音交互示例代码八、多语言支持示例代…

vue 手势解锁功能

效果 实现 <script setup lang"ts"> const canvasRef ref<HTMLCanvasElement>() const ctx ref<CanvasRenderingContext2D | null>(null) const width px2px(600) const height px2px(700) const radius ref(px2px(50))const init () > …

Java面试问题集锦

1.JDK、JRE、JVM 三者有什么关系&#xff1f; JDK&#xff08;全称 Java Development Kit&#xff09;&#xff0c;Java开发工具包&#xff0c;能独立创建、编译、运行程序。 JDK JRE java开发工具&#xff08;javac.exe/java.exe/jar.exe) JRE&#xff08;全称 Java Runtim…

MyBatis之Mapper.xml文件中parameterType,resultType,resultMap的用法

MyBatis之自定义数据类型转换器 前言1.parameterType2.resultType3.resultMap实例代码总结 前言 今天我们来学习Mapper.xml&#xff08;编写SQL的&#xff09;文件中&#xff0c;增删改查标签中&#xff0c;使用parameterType属性指定传递参数类型&#xff0c;resultType属性指…

C# OpenCvSharp 利用白平衡技术进行图像修复

目录 效果 灰度世界(GrayworldWB)-白平衡算法 完美反射(SimpleWB)-白平衡算法 基于学习的(LearningBasedWB)-白平衡算法 代码 下载 C# OpenCvSharp 利用白平衡技术进行图像修复 OpenCV xphoto模块中提供了三种不同的白平衡算法&#xff0c;分别是&#xff1a;灰度世界(G…

Linux进一步研究权限-----------ACL使用

一、使用情况 1.1、场景: 某个大公司&#xff0c;在一个部门&#xff0c;有一个经理和手下有两个员工&#xff0c;在操控一个Linux项目,项目又分为三期做&#xff0c;然而一期比较重要&#xff0c;经理带着员工做完了&#xff0c;公司就觉得技术难点已经做完攻克了&#xff0…

npm install报错解决记录

npm install报错解决记录 常见错误类型 权限错误: EACCES: permission denied EPERM: operation not permitted网络错误: ECONNREFUSED: Connection refused ETIMEDOUT: connect ETIMEDOUT包解析错误: Cannot find module ‘xxx’ Error: No compatible version found编译错误…

飞行机器人专栏(十三)-- 智能优化算法之粒子群优化算法与多目标优化

一、理论基础 1.1 引言 粒子群优化算法&#xff08;Particle Swarm Optimization, PSO&#xff09;自1995年由Eberhart和Kennedy提出以来&#xff0c;已经成为解决优化问题的一种有效且广泛应用的方法。作为一种进化计算技术&#xff0c;PSO受到社会行为模式&#xff0c;特别是…

互联设备-中继器-路由器等

网卡的主要作用 1 在发送方 把从计算机系统要发送的数据转换成能在网线上传输的bit 流 。 2 在接收方 把从网线上接收来的 bit 流重组成计算机系统可以 处理的数据 。 3 判断数据是否是发给自己的 4 发送和控制计算机系统和网线数据流 计算机的分类 1、台式机 2、小型机和服…

【DDD】学习笔记-薪资管理系统的测试驱动开发

回顾薪资管理系统的设计建模 在 3-15 课&#xff0c;我们通过场景驱动设计完成了薪资管理系统的领域设计建模。既然场景驱动设计可以很好地与测试驱动开发融合在一起&#xff0c;因此根据场景驱动设计的成果来开展测试驱动开发&#xff0c;就是一个水到渠成的过程。让我们先来…

rem适配方案

目录 一&#xff0c;rem实际开发适配方案 二&#xff0c;rem适配方案技术使用&#xff08;市场主流&#xff09; 方案一&#xff1a; 方案二&#xff1a;​编辑 一&#xff0c;rem实际开发适配方案 ① 按照设计稿与设备宽度的比例&#xff0c;动态计算并设置html根标签的fo…

【自然语言处理-二-attention注意力 是什么】

自然语言处理二-attention 注意力机制 自然语言处理二-attention 注意力记忆能力回顾下RNN&#xff08;也包括LSTM GRU&#xff09;解决memory问题改进后基于attention注意力的modelmatch操作softmax操作softmax值与hidder layer的值做weight sum 计算和将计算出来的和作为memo…

Jetpack Compose 架构层

点击查看&#xff1a;Jetpack Compose 架构层 官网 本页面简要介绍了组成 Jetpack Compose 的架构层&#xff0c;以及这种设计所依据的核心原则。 Jetpack Compose 不是一个单体式项目&#xff1b;它由一些模块构建而成&#xff0c;这些模块组合在一起&#xff0c;构成了一个完…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的人脸表情识别系统(附完整资源+PySide6界面+训练代码)

摘要&#xff1a;本篇博客呈现了一种基于深度学习的人脸表情识别系统&#xff0c;并详细展示了其实现代码。系统采纳了领先的YOLOv8算法&#xff0c;并与YOLOv7、YOLOv6、YOLOv5等早期版本进行了比较&#xff0c;展示了其在图像、视频、实时视频流及批量文件中识别人脸表情的高…

【elementUi-table表格】 滚动条 新增监听事件; 滚动条滑动到指定位置;

1、给滚动条增加监听 this.dom this.$refs.tableRef.bodyWrapperthis.dom.scrollTop 0let _that thisthis.dom.addEventListener(scroll, () > {//获取元素的滚动距离let scrollTop _that.dom.scrollTop//获取元素可视区域的高度let clientHeight this.dom.clientHeigh…

springboot+vue项目基础开发(17)路由使用

路由 在前端中,路由指的是根据不同的访问路径,展示不同的内容 vue Router的vue.js的官方路由 安装vue Router 再启动 在src下面新建router文件,创建index.js 代码 import {createRouter,createWebHashHistory} from vue-router //导入组件 import Login from @/views/Log…

SparkSQL学习03-数据读取与存储

文章目录 1 数据的加载1.1 方式一&#xff1a;spark.read.format1.1.1读取json数据1.1.2 读取jdbc数据 1.2 方式二&#xff1a;spark.read.xxx1.2.1 读取json数据1.2.2 读取csv数据1.2.3 读取txt数据1.2.4 读取parquet数据1.2.5 读取orc数据1.2.6 读取jdbc数据 2 数据的保存2.1…