微服务篇之分布式系统理论

news2024/11/13 11:18:32

一、CAP定理

1.什么是CAP

1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标:

        1. Consistency(一致性)。

        2. Availability(可用性)。

        3. Partition tolerance (分区容错性)。

Eric Brewer 说,分布式系统无法同时满足这三个指标。 这个结论就叫做 CAP 定理。

2.一致性

        Consistency(一致性):用户访问分布式系统中的任意节点,得到的数据必须一致。

3.可用性

        Availability (可用性):用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝。

4.分区容错

        Partition(分区):因为网络故障或其它原因导致分布式系统中的部分节点与其它节点失去连接,形成独立分区。

        Tolerance(容错):在集群出现分区时,整个系统也要持续对外提供服务。

5.结论

        1. 分布式系统节点之间肯定是需要网络连接的,分区(P)是必然存在的

        2. 如果保证访问的高可用性(A),持续对外提供服务,但不能保证数据的强一致性-->  AP

        3. 如果保证访问的数据强一致性(C),就要放弃高可用性   --> CP

二、BASE理论

BASE理论是对CAP的一种解决思路,包含三个思想:

        Basically Available (基本可用):分布式系统在出现故障时,允许损失部分可用性,即保证核心可用。

        Soft State(软状态):在一定时间内,允许出现中间状态,比如临时的不一致状态。

        Eventually Consistent(最终一致性):虽然无法保证强一致性,但是在软状态结束后,最终达到数据一致。

三、面试题

面试官:什么是CAP理论?

候选人

CAP主要是在分布式项目下的一个理论。包含了三项,一致性、可用性、分区容错性:

  • 一致性(Consistency)是指更新操作成功并返回客户端完成后,所有节点在同一时间的数据完全一致(强一致性),不能存在中间状态。

  • 可用性(Availability) 是指系统提供的服务必须一直处于可用的状态,对于用户的每一个操作请求总是能够在有限的时间内返回结果。

  • 分区容错性(Partition tolerance) 是指分布式系统在遇到任何网络分区故障时,仍然需要能够保证对外提供满足一致性和可用性的服务,除非是整个网络环境都发生了故障。

面试官:为什么分布式系统中无法同时保证一致性和可用性?

候选人

首先一个前提,对于分布式系统而言,分区容错性是一个最基本的要求,因此基本上我们在设计分布式系统的时候只能从一致性(C)和可用性(A)之间进行取舍。

如果保证了一致性(C):对于节点N1和N2,当往N1里写数据时,N2上的操作必须被暂停,只有当N1同步数据到N2时才能对N2进行读写请求,在N2被暂停操作期间客户端提交的请求会收到失败或超时。显然,这与可用性是相悖的。

如果保证了可用性(A):那就不能暂停N2的读写操作,但同时N1在写数据的话,这就违背了一致性的要求。

面试官:什么是BASE理论?

候选人

嗯,这个也是CAP分布式系统设计理论。

BASE是CAP理论中AP方案的延伸,核心思想是即使无法做到强一致性(StrongConsistency,CAP的一致性就是强一致性),但应用可以采用适合的方式达到最终一致性(Eventual Consitency)。它的思想包含三方面:

1、Basically Available(基本可用):基本可用是指分布式系统在出现不可预知的故障的时候,允许损失部分可用性,但不等于系统不可用。

2、Soft state(软状态):即是指允许系统中的数据存在中间状态,并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间进行数据同步的过程存在延时。

3、Eventually consistent(最终一致性):强调系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。其本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1465326.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

APEX开发过程的一个细节

开发过程中发现有一些特殊代码命名有要求 比如 代码: select "project_id",null LINK_CLASS,apex_page.get_url(p_items > P201_PROJECT_ID, p_values > "project_id") LINK,null ICON_CLASS,null LINK_ATTR,null ICON_COLOR_CLASS,cas…

Sora----打破虚实之间的最后一根枷锁----这扇门的背后是人类文明的晟阳还是最后的余晖

目录 一.Sora出道即巅峰 二.为何说Sora是该领域的巨头 三.Sora无敌的背后究竟有怎样先进的处理技术 1.Spacetime Latent Patches 潜变量时空碎片,建构视觉语言系统 2.扩散模型与Diffusion Transformer,组合成强大的信息提取器 3.DiT应用于潜变量时…

【python 的各种模块】(10) 在python3使用turtle 模块画图

目录 1 在anaconda里用python3安装turtle 1.1 因为turtle 本来是适应python2的,所以直接安装报错 1.2 准备好手动下载,官网下载安装包 1.2.1 去官方手册看了下,其实是支持python3的 1.2.2 官网下载,手动安装 1.3 解决办法&…

【Spring】IoC容器 控制反转 与 DI依赖注入 配置类实现版本 第四期

文章目录 基于 配置类 方式管理 Bean一、 配置类和扫描注解二、Bean定义组件三、高级特性:Bean注解细节四、高级特性:Import扩展五、基于注解配置类方式整合三层架构组件总结 基于 配置类 方式管理 Bean Spring 完全注解配置(Fully Annotatio…

MATLAB环境下基于短时傅里叶变换和Rényi熵的脑电信号和语音信号分析

傅里叶变换是不能很好的反映信号在时域的某一个局部范围的频谱特点的,这一点很可惜。因为在许多实际工程中,人们对信号在局部区域的特征是比较关心的,这些特征包含着十分有用的信息。这类信号因为在时域(或者是空间域)上具有突变的非稳定性和…

切比雪夫(最小区域法)圆拟合算法

欢迎关注更多精彩 关注我,学习常用算法与数据结构,一题多解,降维打击。 本期话题:切比雪夫(最小区域法)直线拟合算法 相关背景和理论 点击前往 主要介绍了应用背景和如何转化成线性规划问题 圆拟合输入和…

WordPress使用

WordPress功能菜单 仪表盘 可以查看网站基本信息和内容。 文章 用来管理文章内容,分类以及标签。编辑文章以及设置分类标签,分类和标签可以被添加到 外观-菜单 中。 分类名称自定义;别名为网页url链接中的一部分,最好别设置为中文…

Uniapp + VUE3.0 实现双向滑块视频裁剪效果

效果图 <template><view v-if"info" class"all"><video:src"info.videoUrl"class"video" id"video" :controls"true" object-fit"fill" :show-fullscreen-btn"false"play-btn…

极电电子WMS项目顺利验收,盘古信息助推新能源车企数字化转型

近年来&#xff0c;中国新能源汽车产销持续保持着较高增速&#xff0c;产销总量连续9年位居全球第一。 在产销高涨的背后&#xff0c;新能源汽车行业“内卷”现象也日益加剧&#xff0c;“配置战”、“价格战”等愈发激烈&#xff0c;驱动车企提高自身竞争力&#xff0c;以抢占…

基于AdaBoost算法的情感分析研究-微博情感分析-文本分类

基于AdaBoost算法的情感分析研究 摘 要 随着互联网的快速发展&#xff0c;各类社交媒体平台如微信、QQ等也与日俱增&#xff0c;而微博更是集成了传统网站、论坛、博客等的优点&#xff0c;并加上了人与人之间的互动性、关系亲密程度等多种智能算法&#xff0c;并以简练的形式…

华清远见嵌入式学习——驱动开发——day9

目录 作业要求&#xff1a; 作业答案&#xff1a; 代码效果&#xff1a; ​编辑 Platform总线驱动代码&#xff1a; 应用程序代码&#xff1a; 设备树配置&#xff1a; 作业要求&#xff1a; 通过platform总线驱动框架编写LED灯的驱动&#xff0c;编写应用程序测试&…

Docker容器故障排查与解决方案

Docker是一种相对使用较简单的容器&#xff0c;我们可以通过以下几种方式获取信息&#xff1a; 1、通过docker run执行命令&#xff0c;或许返回信息 2、通过docker logs 去获取日志&#xff0c;做有针对性的筛选 3、通过systemctl status docker查看docker服务状态 4、通过…

React学习——快速上手

文章目录 初步模块思维 初步 https://php.cn/faq/400956.html 1、可以手动使用npm来安装各种插件&#xff0c;来从头到尾自己搭建环境。 如&#xff1a; npm install react react-dom --save npm install babel babel-loader babel-core babel-preset-es2015 babel-preset-rea…

一休哥助手网页版如何使用

一休哥助手网页版可以使用GPT4提问了&#xff0c;具体操作流程如下&#xff1a; 1.登录网页版一休哥助手&#xff08;首次打开页面时&#xff0c;初始化久一点&#xff0c;请耐心等一下&#xff09; https://www.fudai.fun 2.登录后就可以使用GPT4了 3.你还可以自定义系统角色…

备战蓝桥杯---基础算法刷题1

最近在忙学校官网上的题&#xff0c;就借此记录分享一下有价值的题&#xff1a; 1.注意枚举角度 如果我们就对于不同的k常规的枚举&#xff0c;复杂度直接炸了。 于是我们考虑换一个角度&#xff0c;我们不妨从1开始枚举因子&#xff0c;我们记录下他的倍数的个数sum个&#…

c++笔记理解

1.封装 &#xff08;1&#xff09;构造函数不是必须在的 可以通过行为修改属性 &#xff08;2&#xff09;private和protected区别在于继承那里要学 &#xff08;3&#xff09;类默认是私有&#xff0c;struct是共有 私有的好处&#xff1a;控制数据的有效性&#xff0c;意…

如何快速提升Lazada和Shopee店铺订单量:自养号测评补单策略详解

Lazada和Shopee&#xff0c;作为东南亚地区领先的电商平台&#xff0c;汇聚了无数卖家和消费者。然而&#xff0c;随着市场竞争的日益激烈&#xff0c;如何有效地推广自己的店铺&#xff0c;成为卖家们亟待解决的问题。本文将深入探讨店铺推广的策略&#xff0c;并分享如何迅速…

百度百科词条在网络推广中的六大作用

也许很多网友都发现了&#xff0c;在网上查资料&#xff0c;百科词条往往是优先展示的。一方面因为百科是搜索引擎自身的平台&#xff0c;另一方面就是因为百科信息权威&#xff0c;网友认可度高。所以企业开展网络营销&#xff0c;百科营销是一块重要阵地。 也有的企业认为百科…

Feign远程调用(学习笔记)

先来看我们以前利用RestTemplate发起远程调用的代码&#xff1a; 存在下面的问题&#xff1a; ●代码可读性差&#xff0c;编程体验不统一 ●参数复杂URL难以维护 Feign是一个声明式的http客户端&#xff0c;官方地址&#xff1a;https://github.com/OpenFeign/feign 其作用…

代理IP为什么会有延迟?

在当今信息高速发展的时代&#xff0c;随着代理IP在数据采集、网络安全和匿名浏览等领域的应用&#xff0c;已成为网络技术中不可或缺的一环。然而&#xff0c;用户在使用代理IP时经常会遇到一个问题——延迟。 那我们要如何解决这个问题呢&#xff1f; 这需要从代理IP的原理说…