计算机设计大赛 深度学习动物识别 - 卷积神经网络 机器视觉 图像识别

news2024/12/23 8:35:31

文章目录

  • 0 前言
  • 1 背景
  • 2 算法原理
    • 2.1 动物识别方法概况
    • 2.2 常用的网络模型
      • 2.2.1 B-CNN
      • 2.2.2 SSD
  • 3 SSD动物目标检测流程
  • 4 实现效果
  • 5 部分相关代码
    • 5.1 数据预处理
    • 5.2 构建卷积神经网络
    • 5.3 tensorflow计算图可视化
    • 5.4 网络模型训练
    • 5.5 对猫狗图像进行2分类
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习动物识别 - 卷积神经网络 机器视觉 图像识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 背景

目前,由于计算机能力和相关理论的发展获得了重大突破,基于深度学习的图像检测与识别技术已经广泛应用到人们的生产生活中。学长将深度学习的技术应用到野生动物图像识别中,优化了传统的识别方法,形成对野生动物图像更为准确的识别,为实现高效的野生动物图像识别提供了可能。不同于传统的野生动物识别,基于深度学习的野生动物识别技术可以捕获到野生动物更加细致的信息,有利于对野生动物进行更加准确的识别和研究。因此,对基于深度学习的野生动物识别和研究,可以更好的帮助社会管理者和政府全面有效的对野生动物进行保护和监管,这也正是保护和识别野生动物的关键,同时这对整个自然和社会的和谐发展具有极大的推动作用。

2 算法原理

2.1 动物识别方法概况

基于人工特征的野生动物识别方法主要通过人工对野生动物图像中具有辨识度的特征信息进行提取,并通过特征比对的方式就可以对野生动物所属的类别进行识别判断。

在深度学习技术普及之前,传统的数字图像处理技术与传统机器学习技术一直是研究的热点。传统的数字图像处理技术有模块分割、降低噪声点、边缘检测等方法。传统的机器学习技术有支持向量机、随机森林算法、BP
神经网络算法等。

深度学习技术是通过计算机模拟人类大脑的分层表达结构来建立网络模型,从原始数据集中对相关信息逐层提取。之后通过建立相应的神经网络对数据进行学习和分析,从而提高对目标预测和识别的准确率。如今,深度学习技术已经相对成熟,在对目标进行特征提取方面,卷积神经网络技术逐渐取代了传统的图像处理技术,并且在人类的生产生活中得到了广泛应用,这为研究野生动物更高效的识别方法奠定了基础。

2.2 常用的网络模型

图像识别是指对原始图像进行整体分析来达到预测原始图像所属类别的技术。计算机视觉领域中对图像识别技术进行了优化,与此同时,深度学习技术也对图像识别领域展开了突破。目前在图像识别领域中,研究人员开始使用深度学习的技术,并通过在实际应用中发现,基于深度学习的识别技术比传统的识别技术效果更好,且更具有优势。

2.2.1 B-CNN

双线性卷积神经网络(Bilinear
CNN,B-CNN)[34]是用两个卷积神经网络对图像进行特征提取,然后使用相应的函数将得到所有特征进行组合,组合的数据带入到分类器中进行分类。

在这里插入图片描述

2.2.2 SSD

经典的 SSD 模型是由经典网络和特征提取网络组成。

通过引入性能更好的特征提取网络对 SSD
目标检测模型进行了优化。Fu[49]等人提出了增加卷积神经网络层数和深度的方法用于提高识别准确率。通过实际应用之后,发现该方法识别准确率确实得到了一定程度的提高,但是模型结构却越来越复杂,同时对深层次的网络训练也越来越困难。

在这里插入图片描述

3 SSD动物目标检测流程

在这里插入图片描述

学长首先对 DenseNet-169 网络进行初始化,使用 DenseNet-169 网络作为目标检测的前置网络结构,并运用迁移学习的方法对
DenseNet-169 进行预训练,并将Snapshot Serengeti数据集下的权重值迁移到野生动物检测任务中,使数据集的训练速度得到提升。将
DenseNet-169 作为前置网络置于 SSD 中的目标提取检测网络之前,更换完前置网络的 SSD 目标检测网络依然完整。

4 实现效果

在这里插入图片描述
在这里插入图片描述

做一个GUI交互界面

在这里插入图片描述

5 部分相关代码

5.1 数据预处理

import cv2 as cv
import os
import numpy as np

import random
import pickle

import time

start_time = time.time()

data_dir = './data'
batch_save_path = './batch_files'

# 创建batch文件存储的文件夹
os.makedirs(batch_save_path, exist_ok=True)

# 图片统一大小:100 * 100
# 训练集 20000:100个batch文件,每个文件200张图片
# 验证集 5000:一个测试文件,测试时 50张 x 100 批次

# 进入图片数据的目录,读取图片信息
all_data_files = os.listdir(os.path.join(data_dir, 'train/'))

# print(all_data_files)

# 打算数据的顺序
random.shuffle(all_data_files)

all_train_files = all_data_files[:20000]
all_test_files = all_data_files[20000:]

train_data = []
train_label = []
train_filenames = []

test_data = []
test_label = []
test_filenames = []

# 训练集
for each in all_train_files:
    img = cv.imread(os.path.join(data_dir,'train/',each),1)
    resized_img = cv.resize(img, (100,100))

    img_data = np.array(resized_img)
    train_data.append(img_data)
    if 'cat' in each:
        train_label.append(0)
    elif 'dog' in each:
        train_label.append(1)
    else:
        raise Exception('%s is wrong train file'%(each))
    train_filenames.append(each)

# 测试集
for each in all_test_files:
    img = cv.imread(os.path.join(data_dir,'train/',each), 1)
    resized_img = cv.resize(img, (100,100))

    img_data = np.array(resized_img)
    test_data.append(img_data)
    if 'cat' in each:
        test_label.append(0)
    elif 'dog' in each:
        test_label.append(1)
    else:
        raise Exception('%s is wrong test file'%(each))
    test_filenames.append(each)

print(len(train_data), len(test_data))

# 制作100个batch文件
start = 0
end = 200
for num in range(1, 101):
    batch_data = train_data[start: end]
    batch_label = train_label[start: end]
    batch_filenames = train_filenames[start: end]
    batch_name = 'training batch {} of 15'.format(num)

    all_data = {
    'data':batch_data,
    'label':batch_label,
    'filenames':batch_filenames,
    'name':batch_name
    }

    with open(os.path.join(batch_save_path, 'train_batch_{}'.format(num)), 'wb') as f:
        pickle.dump(all_data, f)

    start += 200
    end += 200

# 制作测试文件
all_test_data = {
    'data':test_data,
    'label':test_label,
    'filenames':test_filenames,
    'name':'test batch 1 of 1'
    }

with open(os.path.join(batch_save_path, 'test_batch'), 'wb') as f:
    pickle.dump(all_test_data, f)

end_time = time.time()
print('制作结束, 用时{}秒'.format(end_time - start_time))

5.2 构建卷积神经网络

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')

flatten = tf.layers.flatten(pool4)
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None)

5.3 tensorflow计算图可视化

self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], 'input_data')
self.y = tf.placeholder(tf.int64, [None], 'output_data')
self.keep_prob = tf.placeholder(tf.float32)

# 图片输入网络中
fc = self.conv_net(self.x, self.keep_prob)
self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc)
self.y_ = tf.nn.softmax(fc) # 计算每一类的概率
self.predict = tf.argmax(fc, 1)
self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32))
self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)
self.saver = tf.train.Saver(max_to_keep=1)

最后的saver是要将训练好的模型保存到本地。

5.4 网络模型训练

然后编写训练部分的代码,训练步骤为1万步

acc_list = []
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    for i in range(TRAIN_STEP):
        train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE)

        eval_ops = [self.loss, self.acc, self.train_op]
        eval_ops_results = sess.run(eval_ops, feed_dict={
            self.x:train_data,
            self.y:train_label,
            self.keep_prob:0.7
        })
        loss_val, train_acc = eval_ops_results[0:2]

        acc_list.append(train_acc)
        if (i+1) % 100 == 0:
            acc_mean = np.mean(acc_list)
            print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format(
                i+1,loss_val,train_acc,acc_mean
            ))
        if (i+1) % 1000 == 0:
            test_acc_list = []
            for j in range(TEST_STEP):
                test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE)
                acc_val = sess.run([self.acc],feed_dict={
                    self.x:test_data,
                    self.y:test_label,
                    self.keep_prob:1.0
            })
            test_acc_list.append(acc_val)
            print('[Test ] step:{0}, mean_acc:{1:.5}'.format(
                i+1, np.mean(test_acc_list)
            ))
    # 保存训练后的模型
    os.makedirs(SAVE_PATH, exist_ok=True)
    self.saver.save(sess, SAVE_PATH + 'my_model.ckpt')

训练结果如下:

在这里插入图片描述

5.5 对猫狗图像进行2分类

在这里插入图片描述

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1461176.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

静态时序分析:保持时间分析

相关阅读 静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html?spm1001.2014.3001.5482 在静态时序分析中,保持时间检查约束了触发器时钟引脚(时钟路径)和输入数据引脚(数据路径)之间的时序关…

虚拟机安装Centos7迷你版

虚拟机安装Centos7迷你版 迷你版较常规版精简了很多功能,所以体积也小了很多,喜欢自定义安装的可以选择迷你版 参考文章: VirtualBox虚拟机安装Centos7详细教程图解 网卡配置参考文章 下载Centos迷你版镜像 安装镜像 下载镜像 阿里云Cen…

【Python】【VS Code】VS Code中python.json和setting.json文件配置说明

目录 1. python.json配置 2. setting.json配置 3. 解决中文乱码 4. 实现效果 1. python.json配置 python.json 获取步骤:文件 -> 首选项 -> 配置用户代码片段 -> python 此为VS Code的头文件设置,复制以下内容到 python.json {"HEADER…

【爬虫JS逆向-工具篇】浏览器内存漫游加密参数Hook实战教程

文章目录 1. 写在前面2. 环境搭建2. 加密定位实战 【作者主页】:吴秋霖 【作者介绍】:Python领域优质创作者、阿里云博客专家、华为云享专家。长期致力于Python与爬虫领域研究与开发工作! 【作者推荐】:对JS逆向感兴趣的朋友可以关…

如何高效测试APP,快速定位bug?

一般提到测试,很多人会想到考试,但任意一个APP面世之前,也都需要多次测试,确保可以正常使用之后才会面世。有的公司会有专门的测试工程师,而在一般的互联网公司,大多由产品经理、工程师、设计师等兼职&…

vulnhub练习 DC-1复现及分析

一、搭建环境 1.工具 靶机:DC-1 192.168.200.17 攻击机:kali 192.168.200.13 2.注意 攻击机和靶机的网络连接方式要相同,另外DC-1的网络连接方式我这里采用NAT模式,是与kali的网络连接模式相同的(当然亦可以选用桥…

unity学习(28)——登录功能

有之前注册的知识,登录就很容易处理了。 登陆成功返回id: 登录失败返回null: 测试同一账号不能重复登陆!登录成功后最好可以跳到新的场景中 结果是好的,去服务器看一下对应部分的代码,可见,登…

多端开发围炉夜话

文章目录 一、多端开发 一、多端开发 uni-app 官网 UNI-APP中的UI框架:介绍常用的UI框架及其特点 uView UIVant WeappColor UIMint UI uniapp嵌入android原生开发的功能 uniapp使用安卓原生sdk uni-app中的uni.requireNativePlugin Qt for iOS Qt for Android

Deep Layer Aggregation(CVPR 2018)原理与代码解析

paper:Deep Layer Aggregation official implementation:https://github.com/ucbdrive/dla third-party implementation:https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/dla.py 本文的创新点 骨干网络的设计…

Spring Boot利用Kaptcha生成验证码

生成验证码 我们在登录或注册某个网站的时候,会需要我们输入验证码,才能登录注册,那么如何生成验证码呢?其实,生成验证码我们可以用Java Swing在后台内存里的区域画一个出来,但是非常麻烦,所以…

Linux系统——nginx服务介绍

一、Nginx——高性能的Web服务端 Nginx的高并发性能优于httpd服务 1.nginx概述 Nginx是由1994年毕业于俄罗斯国立莫斯科鲍曼科技大学的同学为俄罗斯rambler.ru公司开发的,开发工作最早从2002年开始,第一次公开发布时间是2004年10月4日,版本…

KubeSphere 镜像构建器(S2I)服务证书过期解决方案

目前 KubeSphere 所有 3.x.x 版本,如果开启了 DevOps 模块并使用了镜像构建器功能(S2I)都会遇到证书过期问题。 解决方法 已开启 DevOps 模块 下载这个更新 S2I 服务证书压缩包,上传到任一可以访问 K8s 集群的节点; …

Java Web(一)--介绍

Java Web 技术体系图 三大组成部分: 前端: 前端开发技术工具包括三要素:HTML、CSS 和 JavaScript;其他高级的前端框架,如bootstrap、jquery,VUE 等。 后端: 后端开发技术工具主要有&am…

PiflowX-组件UnionAll

UnionAll组件 组件说明 Union多个输入源。输入源必须具有相同的字段类型。 计算引擎 flink 组件分组 common 端口 Inport:Any outport:默认端口 组件属性 名称展示名称默认值允许值是否必填描述例子inportsInports“”无否Inports string are…

Atcoder ABC341 A - Print 341

Print 341(输出 341) 时间限制:2s 内存限制:1024MB 【原题地址】 所有图片源自Atcoder,题目译文源自脚本Atcoder Better! 点击此处跳转至原题 【问题描述】 【输入格式】 【输出格式】 【样例1】 【样例输入1】 …

基于python-socket构建任务服务器(基于socket发送指令创建、停止任务)

在实现ia业务服务器时需要构建一个python-socket客户端,1、要求能与服务器保持心跳连接,每10秒钟发送一次心跳信号;2、要求能根据socket服务器发送的指令创建或终止一个定时任务。 为此以3个类实现该功能,分别为socket通信类&…

Hypervisor是什么

Hypervisor 通常指的是虚拟机监视器(VirtualMachine Monitor),它是一种软件或硬件,可以在物理服务器上创建和管理多个虚拟机(VirtualMachine)。 Hypervisor 提供了一个抽象层,将物理服务器的资源…

基于SpringBoot的农产品智慧物流系统

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式 🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 &…

Redis之缓存击穿问题解决方案

文章目录 一、书接上文二、介绍三、解决方案1. 单例双检锁2. 缓存预热和定时任务 一、书接上文 Redis之缓存雪崩问题解决方案 二、介绍 缓存击穿就是大量并发访问同一个热点数据,一旦这个热点数据缓存失效,则请求压力都来到数据库。 三、解决方案 1…

​LeetCode解法汇总106. 从中序与后序遍历序列构造二叉树

目录链接: 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目: https://github.com/September26/java-algorithms 原题链接: 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 描述: 给定两个…