【数据结构】每天五分钟,快速入门数据结构(一)——数组

news2024/12/24 21:23:59

目录

一.初始化语法

二.特点

三.数组中的元素默认值

四.时间复杂度

五.Java中的ArrayList类 可变长度数组

1 使用

2 注意事项

3 实现原理

4 ArrayList源码

5 ArrayList方法

一.初始化语法

// 数组动态初始化(先定义数组,指定数组长度,后续再进行赋值)
int[] arr = new int[7]; 
arr[0] = 1; 
// 数组静态初始化(在创建数组时直接赋值)
String[] names = new String[]{"张三","李四","王五"};
int[] nums = {0,0,1,1,1,2,2,3,3,4}; 
//遍历数组中的元素
for( int i = 0;i < arr.length; i++){
   System.out.println(arr[i]);
}

二.特点

  • 数组下标从0开始

  • 随机访问能力:可以通过索引进行o(1)时间复杂度的访问

  • 一旦初始化就不能改变长度

  • 物理上和逻辑上都是连续的

三.数组中的元素默认值

  • int :0;

  • char: 空;

  • boolean: false;

  • double: 0.0;

  • 引用类型:null

四.时间复杂度

在数组中的任意位置插入:O(n) 通过索引值访问数组元素:O(1)

查找数组中某个值所在的索引值:O(n)或者O(log n)(有序数组二分查找) 删除数组中的某个元素:O(n)

五.Java中的ArrayList类 可变长度数组

1 使用

 ArrayList<String> sites = new ArrayList<String>(); // 创建一个可变长数组
 sites.add("张三"); // 添加元素
 sites.add("李四");
 sites.add("王五");
 System.out.println(sites); // 打印输出数组元素
 System.out.println(sites.get(1));  // 访问第二个元素
 sites.set(1, "柳柳"); // 修改元素内容,第一个参数为索引位置,第二个为要修改的值
 sites.remove(3); // 删除元素
 sites.size(); // 获取数组长度

2 注意事项

  • 数组下标从0开始

  • 数组中存储的元素类型只能为引用类型,因此需要使用基本类型的包装类

3 实现原理

自动创建一个长度为n的数组,当存放的数据量超过n时,就重新创建一个更长的数组,再将原数组内容复制到新数组中,更改数组名指向地址。

4 ArrayList源码

package java.util;
 
public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
    // 序列版本号
    private static final long serialVersionUID = 8683452581122892189L;
 
    // 默认容量大小
    private static final int DEFAULT_CAPACITY = 10;
 
    // 空数组
    private static final Object[] EMPTY_ELEMENTDATA = {};
 
    // 用于保存ArrayList中数据的数组
    private transient Object[] elementData;
 
    // ArrayList中所包含元素的个数
    private int size;
 
    // 带初始容量参数的构造函数
    public ArrayList(int initialCapacity) {
        super();
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        this.elementData = new Object[initialCapacity];
    }
 
    // 默认构造函数,其默认初始容量为10
    public ArrayList() {
        super();
        this.elementData = EMPTY_ELEMENTDATA;
    }
 
    // 带Collection参数的构造函数
    public ArrayList(Collection<? extends E> c) {
        elementData = c.toArray();
        size = elementData.length;
        // c.toArray might (incorrectly) not return Object[] (see 6260652)
        if (elementData.getClass() != Object[].class)
            elementData = Arrays.copyOf(elementData, size, Object[].class);
    }
 
    // 将此 ArrayList 实例的容量调整为列表的当前大小(实际元素个数)
    public void trimToSize() {
        modCount++;
        if (size < elementData.length) {
            elementData = Arrays.copyOf(elementData, size);
        }
    }
 
    // 如有必要,增加此 ArrayList 实例的容量,以确保它至少能够容纳最小容量参数所
    // 指定的元素数
    public void ensureCapacity(int minCapacity) {
        int minExpand = (elementData != EMPTY_ELEMENTDATA)
            // any size if real element table
            ? 0
            // larger than default for empty table. It's already supposed to be
            // at default size.
            : DEFAULT_CAPACITY;
 
        if (minCapacity > minExpand) {
            ensureExplicitCapacity(minCapacity);
        }
    }
 
    private void ensureCapacityInternal(int minCapacity) {
        if (elementData == EMPTY_ELEMENTDATA) {
            minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
        }
 
        ensureExplicitCapacity(minCapacity);
    }
 
    private void ensureExplicitCapacity(int minCapacity) {
        modCount++;
 
        // overflow-conscious code
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }
 
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
 
 
    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;
        int newCapacity = oldCapacity + (oldCapacity >> 1);
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        // minCapacity is usually close to size, so this is a win:
        elementData = Arrays.copyOf(elementData, newCapacity);
    }
 
    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
            Integer.MAX_VALUE :
            MAX_ARRAY_SIZE;
    }
 
    // 返回ArrayList中的元素个数
    public int size() {
        return size;
    }
 
    // 判断ArrayList是否为空
    public boolean isEmpty() {
        return size == 0;
    }
 
    // 判断ArrayList是否包含Object(o)
    public boolean contains(Object o) {
        return indexOf(o) >= 0;
    }
 
    // 返回ArrayList中首次出现的指定元素的索引,或如果此列表不包含元素,则返回 -1
    public int indexOf(Object o) {
        if (o == null) {
            for (int i = 0; i < size; i++)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = 0; i < size; i++)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }
 
    // 返回ArrayList中最后一次出现的指定元素的索引,或如果此列表不包含索引,则返回 -1
    public int lastIndexOf(Object o) {
        if (o == null) {
            for (int i = size-1; i >= 0; i--)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = size-1; i >= 0; i--)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }
 
    // 返回此 ArrayList 实例的浅表副本
    public Object clone() {
        try {
            @SuppressWarnings("unchecked")
            ArrayList<E> v = (ArrayList<E>) super.clone();
            // 将当前ArrayList的全部元素拷贝到v中
            v.elementData = Arrays.copyOf(elementData, size);
            v.modCount = 0;
            return v;
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError();
        }
    }
 
    // 按适当顺序(从第一个到最后一个元素)返回包含此列表中所有元素的数组
    public Object[] toArray() {
        return Arrays.copyOf(elementData, size);
    }
 
    // 返回ArrayList的模板数组。所谓模板数组,即可以将T设为任意的数据类型
    @SuppressWarnings("unchecked")
    public <T> T[] toArray(T[] a) {
        if (a.length < size)
            // Make a new array of a's runtime type, but my contents:
            return (T[]) Arrays.copyOf(elementData, size, a.getClass());
        System.arraycopy(elementData, 0, a, 0, size);
        if (a.length > size)
            a[size] = null;
        return a;
    }
 
    // 位置访问操作   
    @SuppressWarnings("unchecked")
    E elementData(int index) {
        return (E) elementData[index];
    }
 
    // 返回ArrayList中指定位置上的元素
    public E get(int index) {
        rangeCheck(index);
 
        return elementData(index);
    }
 
    // 用指定的元素替代ArrayList中指定位置上的元素,并返回替代前的元素
    public E set(int index, E element) {
        rangeCheck(index);
 
        E oldValue = elementData(index);
        elementData[index] = element;
        return oldValue;
    }
 
    // 将指定的元素添加到ArrayList的尾部
    public boolean add(E e) {
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        elementData[size++] = e;
        return true;
    }
 
    // 将指定的元素插入ArrayList中的指定位置
    public void add(int index, E element) {
        rangeCheckForAdd(index);
 
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        System.arraycopy(elementData, index, elementData, index + 1,
                         size - index);
        elementData[index] = element;
        size++;
    }
 
    // 移除ArrayList中指定位置上的元素,并返回该位置上的元素
    public E remove(int index) {
        rangeCheck(index);
 
        modCount++;
        E oldValue = elementData(index);
 
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // clear to let GC do its work
 
        return oldValue;
    }
 
    // 移除ArrayList中首次出现的指定元素(如果存在则移除并返回true,否则返回false)
    public boolean remove(Object o) {
        if (o == null) {
            for (int index = 0; index < size; index++)
                if (elementData[index] == null) {
                    fastRemove(index);
                    return true;
                }
        } else {
            for (int index = 0; index < size; index++)
                if (o.equals(elementData[index])) {
                    fastRemove(index);
                    return true;
                }
        }
        return false;
    }
 
    // 私有方法,用于快速移除
    private void fastRemove(int index) {
        modCount++;
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // clear to let GC do its work
    }
 
    // 移除ArrayList中的所有元素
    public void clear() {
        modCount++;
 
        // clear to let GC do its work
        for (int i = 0; i < size; i++)
            elementData[i] = null;
 
        size = 0;
    }
 
    // 按照指定 collection 的迭代器所返回的元素顺序,
    // 将该 collection 中的所有元素添加到ArrayList的尾部
    public boolean addAll(Collection<? extends E> c) {
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount
        System.arraycopy(a, 0, elementData, size, numNew);
        size += numNew;
        return numNew != 0;
    }
 
    // 从指定的位置开始,将指定 collection 中的所有元素插入到ArrayList中
    public boolean addAll(int index, Collection<? extends E> c) {
        rangeCheckForAdd(index);
 
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount
 
        int numMoved = size - index;
        if (numMoved > 0)
            System.arraycopy(elementData, index, elementData, index + numNew,
                             numMoved);
 
        System.arraycopy(a, 0, elementData, index, numNew);
        size += numNew;
        return numNew != 0;
    }
 
    // 移除列表中索引在 fromIndex(包括)和 toIndex(不包括)之间的所有元素
    protected void removeRange(int fromIndex, int toIndex) {
        modCount++;
        int numMoved = size - toIndex;
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                         numMoved);
 
        // clear to let GC do its work
        int newSize = size - (toIndex-fromIndex);
        for (int i = newSize; i < size; i++) {
            elementData[i] = null;
        }
        size = newSize;
    }
 
    // 私有方法,用于范围检测
    private void rangeCheck(int index) {
        if (index >= size)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }
 
    // 私有方法,用于add和addAll
    private void rangeCheckForAdd(int index) {
        if (index > size || index < 0)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }
 
 
    private String outOfBoundsMsg(int index) {
        return "Index: "+index+", Size: "+size;
    }
 
    // 移除ArrayList中Collection所包含的所有元素
    public boolean removeAll(Collection<?> c) {
        return batchRemove(c, false);
    }
 
    // 保留所有ArrayList和Collection共有的元素
    public boolean retainAll(Collection<?> c) {
        return batchRemove(c, true);
    }
 
    private boolean batchRemove(Collection<?> c, boolean complement) {
        final Object[] elementData = this.elementData;
        int r = 0, w = 0;
        boolean modified = false;
        try {
            for (; r < size; r++)
                if (c.contains(elementData[r]) == complement)
                    elementData[w++] = elementData[r];
        } finally {
            // Preserve behavioral compatibility with AbstractCollection,
            // even if c.contains() throws.
            if (r != size) {
                System.arraycopy(elementData, r,
                                 elementData, w,
                                 size - r);
                w += size - r;
            }
            if (w != size) {
                // clear to let GC do its work
                for (int i = w; i < size; i++)
                    elementData[i] = null;
                modCount += size - w;
                size = w;
                modified = true;
            }
        }
        return modified;
    }
 
    // java.io.Serializable的写入函数
    // 将ArrayList的“容量,所有的元素值”都写入到输出流中
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException{
        // Write out element count, and any hidden stuff
        int expectedModCount = modCount;
        s.defaultWriteObject();
 
        // Write out size as capacity for behavioural compatibility with clone()
        s.writeInt(size);
 
        // Write out all elements in the proper order.
        for (int i=0; i<size; i++) {
            s.writeObject(elementData[i]);
        }
 
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
    }
 
    // java.io.Serializable的读取函数:根据写入方式读出
    // 先将ArrayList的“容量”读出,然后将“所有的元素值”读出
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        elementData = EMPTY_ELEMENTDATA;
 
        // Read in size, and any hidden stuff
        s.defaultReadObject();
 
        // Read in capacity
        s.readInt(); // ignored
 
        if (size > 0) {
            // be like clone(), allocate array based upon size not capacity
            ensureCapacityInternal(size);
 
            Object[] a = elementData;
            // Read in all elements in the proper order.
            for (int i=0; i<size; i++) {
                a[i] = s.readObject();
            }
        }
    }
 
    // 返回一个从指定位置开始遍历的ListIterator迭代器
    public ListIterator<E> listIterator(int index) {
        if (index < 0 || index > size)
            throw new IndexOutOfBoundsException("Index: "+index);
        return new ListItr(index);
    }
 
    // 返回一个ListIterator迭代器
    public ListIterator<E> listIterator() {
        return new ListItr(0);
    }
 
    // 返回一个Iterator迭代器
    public Iterator<E> iterator() {
        return new Itr();
    }
 
    // 返回一个指定范围的子List列表
    public List<E> subList(int fromIndex, int toIndex) {
        subListRangeCheck(fromIndex, toIndex, size);
        return new SubList(this, 0, fromIndex, toIndex);
    }
}

5 ArrayList方法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1457716.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

书生浦语大模型实战营-课程笔记(5)

LLM部署特点&#xff0c;内存开销大&#xff0c;TOKEN数量不确定 移动端竟然也可以部署LLM。之前以为只能在服务端部署&#xff0c;移动端作为客户端发起请求来调用大模型。 LMDeploy用于模型量化 模型量化&#xff1a;降低内存消耗 推理性能对比 量化主要作用&#xff1a;…

内存计算研究进展-技术架构

内存计算技术是一个宏观的概念&#xff0c;是将计算能力集成到内存中的技术统称。集成了内存计算技术的计算机系统不仅能直接在内存中执行部分计算&#xff0c;还能支持传统以CPU为核心的应用程序的执行。区别于内存计算&#xff0c;存算一体芯片将存储与计算相结合&#xff0c…

MySQL--SQL解析顺序

前言&#xff1a; 一直是想知道一条SQL语句是怎么被执行的&#xff0c;它执行的顺序是怎样的&#xff0c;然后查看总结各方资料&#xff0c;就有了下面这一篇博文了。 本文将从MySQL总体架构—>查询执行流程—>语句执行顺序来探讨一下其中的知识。 一、MySQL架构总览&a…

算法模板 6.并查集

并查集 用于解决连通块问题。 判断集合个数也就是判断p[x] x 的个数 836. 合并集合 - AcWing题库 #include <bits/stdc.h> using namespace std; const int N 1e5 10; int p[N]; // 记录每个元素的father int n, m;int find(int x){ // 查询元素x的fatherif(p[x] …

GPIO控制和命名规则

Linux提供了GPIO子系统驱动框架&#xff0c;使用该驱动框架即可灵活地控制板子上的GPIO。 GPIO命名 泰山派开发板板载了一个40PIN 2.54间距的贴片排针&#xff0c;排针的引脚定义兼容经典40PIN接口。 在后续对GPIO进行操作前&#xff0c;我们需要先了解k3566的GPIO命名规则&a…

Windows 重启 explorer 的正确做法

目录 一、关于 Restart Manager 二、重启管理器实例 三、完整实现代码和测试 本文属于原创文章&#xff0c;转载请注明出处&#xff1a; https://blog.csdn.net/qq_59075481/article/details/136179191。 我们往往使用 TerminateProcess 并传入 PID 和特殊结束代码 1 或者…

rocketMQ-Dashboard安装与部署

1、下载最新版本rocketMQ-Dashboard 下载地址&#xff1a;https://github.com/apache/rocketmq-dashboard 2、下载后解压&#xff0c;并用idea打开 3、修改配置 ①、修改端口及rocketmq服务的ip&#xff1a;port ②、修改访问账号、密码 3、然后启动访问&#xff1a; 4、mav…

单片机01天_stm32f407zg_创建新工程

创建“寄存器版工程” 1、创建工程文件夹 创建工程文件夹“Project”&#xff0c;内部包含文件夹“CMSIS”&&“USER”。 CMSIS&#xff1a;Cortex系列内核接口驱动文件。 USER&#xff1a;存放用户编写的程序文件。 “USER”文件夹内包含“Inc”&&“Src”…

yolov5的Mosaic原理解析

众所周知&#xff0c;yolov5中使用了mosaic增强进行数据增强&#xff0c;效果就是将4张图片拼凑为1张图片。为了更好优化自定义任务&#xff0c;特对mosaic原理进行解析。 1、mosaic原理解析 mosaic增强的原理一张图就可以解释&#xff1a; 1.1 图的注释 首先高亮区域&am…

YOLOv8-Openvino和ONNXRuntime推理【CPU】

1 环境&#xff1a; CPU&#xff1a;i5-12500 2 安装Openvino和ONNXRuntime 2.1 Openvino简介 Openvino是由Intel开发的专门用于优化和部署人工智能推理的半开源的工具包&#xff0c;主要用于对深度推理做优化。 Openvino内部集成了Opencv、TensorFlow模块&#xff0c;除此…

ClickHouse 基础(一)

官网 以毫秒为单位查询数十亿行 ClickHouse是用于实时应用和分析的最快、资源效率最高的开源数据库。 安装ClickHouse 使用ClickHouse&#xff0c;你有三个选择: ClickHouse云:官方ClickHouse作为一项服务&#xff0c;-由ClickHouse的创建者构建&#xff0c;维护和支持快速安…

C语言中关于#include的一些小知识

写代码的过程中&#xff0c;因为手误&#xff0c;重复包含了头文件 可以看到没有报错 如果是你自己编写的头文件&#xff0c;那么如果没加唯一包含标识的话&#xff0c;那么编译器会编译报错的。如果是系统自带的头文件&#xff0c;由于其每个头文件都加了特殊标识&#xff0c…

【软考】系统集成项目管理工程师(十六)变更管理【1分】

一、 变更的概念 1、定义、原因、分类 2、变更流程 二、 变更的原则 1、变更管理原则、配置管理工具 2、变更管理流程 三、 变更的流程及角色职责 1、提出变更申请、变更影响分析 2、变更测试 1、有些变更很小&#xff0c;客户着急要&#xff0c;可以不用走变更程序直接修改…

Android widget基础指南

widget的概念最早是由一名叫Rose的苹果工程师提出&#xff0c;后来经过多方面机缘巧合的发展下&#xff0c;便有了今天Android平台上的小组件widget&#xff0c;一般APP开发可能应用场景较少&#xff0c;最常见的莫过于天气APP的widget。但对于从事IOT或车载方向的同学&#xf…

FL Studio2024年最新21.2破解中文版本下载地址

FL Studio 21的中文版本是一款非常受欢迎的音乐制作软件&#xff0c;它为用户提供了丰富的功能和工具&#xff0c;使他们能够轻松创作和编辑音乐。以下是一些关于FL Studio 21中文版本的主要特点和功能&#xff1a; FL Studio 21 Win-安装包下载如下: https://wm.makeding.co…

- 工程实践 - 《QPS百万级的有状态服务实践》03 - 消息队列

本文属于专栏《构建工业级QPS百万级服务》 继续上篇《QPS百万级的有状态服务实践》02 - 冷启动和热更新。我们的架构如图1。上一章在热更新部分&#xff0c;我们引入了消息队列。本章我们介绍下各个消息队列的优缺点&#xff0c;并选择其中一个说下核心概念和原理。 图1 目前市…

【Go语言】Go语言的数据类型

GO 语言的数据类型 Go 语言内置对以下这些基本数据类型的支持&#xff1a; 布尔类型&#xff1a;bool 整型&#xff1a;int8、byte、int16、int、uint、uintptr 等 浮点类型&#xff1a;float32、float64 复数类型&#xff1a;complex64、complex128 字符串&#xff1a;st…

嵌入式学习 Day21

一. 文件IO: 1. lseek off_t lseek(int fd, off_t offset, int whence); 功能: 重新设定文件描述符的偏移量 参数: fd:文件描述符 offset:偏移量 whence: SEEK_SET 文件开头 …

基于STM32F407的coreJSON使用教程

目录 概述 工程建立 代码集成 函数介绍 使用示例 概述 coreJSON是FreeRTOS中的一个组件库&#xff0c;支持key查找的解析器&#xff0c;他只是一个解析器&#xff0c;不能生成json数据。同时严格执行 ECMA-404 JSON 标准。该库用 C 语言编写&#xff0c;设计符合 ISO C90…

杨氏矩阵和杨辉三角

杨氏矩阵 有一个数字矩阵&#xff0c;矩阵的每行从左到右是递增的&#xff0c;矩阵从上到下是递增的&#xff0c;请编写程序在这样的矩阵中查找某个数字是否存在。 要求&#xff1a;时间复杂度小于O(N); 分析 若要满足要求时间复杂度小于O(N)&#xff0c;就不能每一行一个个…