Dubbo优雅关闭
1. 关闭有什么问题
当服务提供方要上线的时候,一般是通过部署系统完成实例重启。在这个过程中,服务提供方的团队并不会事先告诉调用方他们需要操作哪些机器,从而让调用方去事先切走流量。而对调用方来说,它也无法预测到服务提供方要对哪些机器重启上线,因此负载均衡就有可能把要正在重启的机器选出来,这样就会导致把请求发送到正在重启中的机器里面,从而导致调用方不能拿到正确的响应结果。
在服务重启的时候,对于调用方来说,这时候可能会存在以下三种情况:
-
调用方发请求前,目标服务已经下线。对于调用方来说,跟目标节点的连接会断开,这时候调用方可以立马感知到,并且在其健康列表里面会把这个节点挪掉,自然也就不会被负载均衡选中。
-
调用方发请求的时候,目标服务正在关闭,但调用方并不知道它正在关闭,而且两者之间的连接也没断开,所以这个节点还会存在健康列表里面,因此该节点就有一定概率会被负载均衡选中。
-
在服务关闭的时候,调用方已经发送请求成功,并且这个请求正在被处理了。
2. 关闭的方法
关闭时, 在 RPC 里面怎么避免调用方业务受损。
-
最没有效率的办法就是人工通知调用方,让他们手动摘除要下线的机器,这种方式很原始也很直接。但这样对于提供方上线的过程来说太繁琐了,每次上线都要通知到所有调用我接口的团队,整个过程既浪费时间又没有意义,显然不能被正常接受。
-
通过服务发现来“实时”感知服务提供方的状态。当服务提供方关闭前,是不是可以先通知注册中心进行下线,然后通过注册中心告诉调用方进行节点摘除?关闭流程如下图所示:
但是这么做不能完全保证实现无损上下线。
如上图所示,整个关闭过程中依赖了两次 RPC 调用,一次是服务提供方通知注册中心下线操作,一次是注册中心通知服务调用方下线节点操作。注册中心通知服务调用方都是异步的,我们在“服务发现”一讲中讲过在大规模集群里面,服务发现只保证最终一致性,并不保证实时性,所以注册中心在收到服务提供方下线的时候,并不能成功保证把这次要下线的节点推送到所有的调用方。所以这么来看,通过服务发现并不能做到应用无损关闭。
- 不能强依赖“服务发现”来通知调用方要下线的机器,那服务提供方自己来通知行不行?因为在 RPC 里面调用方跟服务提供方之间是长连接,我们可以在提供方应用内存里面维护一份调用方连接集合,当服务要关闭的时候,挨个去通知调用方去下线这台机器。这样整个调用链路就变短了,对于每个调用方来说就一次 RPC,可以确保调用的成功率很高。大部分场景下,这么做确实没有问题,我们之前也是这么实现的,但是我们发现线上还是会偶尔会出现,因为服务提供方上线而导致调用失败的问题。
那到底哪里出问题了呢?分析了调用方请求日志跟收到关闭通知的日志,并且发现了一个线索如下:出问题请求的时间点跟收到服务提供方关闭通知的时间点很接近,只比关闭通知的时间早不到 1ms,如果再加上网络传输时间的话,那服务提供方收到请求的时候,它应该正在处理关闭逻辑。这就说明服务提供方关闭的时候,并没有正确处理关闭后接收到的新请求。
3. 优雅关闭
因为服务提供方已经开始进入关闭流程,那么很多对象就可能已经被销毁了,关闭后再收到的请求按照正常业务请求来处理,肯定是没法保证能处理的。所以我们可以在关闭的时候,设置一个请求“挡板”,挡板的作用就是告诉调用方,我已经开始进入关闭流程了,我不能再处理你这个请求了。
基于这个思路,我们可以这么处理:当服务提供方正在关闭,如果这之后还收到了新的业务请求,服务提供方直接返回一个特定的异常给调用方(比如 ShutdownException)。这个异常就是告诉调用方“我已经收到这个请求了,但是我正在关闭,并没有处理这个请求”,然后调用方收到这个异常响应后,RPC 框架把这个节点从健康列表挪出,并把请求自动重试到其他节点,因为这个请求是没有被服务提供方处理过,所以可以安全地重试到其他节点,这样就可以实现对业务无损。
但如果只是靠等待被动调用,就会让这个关闭过程整体有点漫长。因为有的调用方那个时刻没有业务请求,就不能及时地通知调用方了,所以我们可以加上主动通知流程,这样既可以保证实时性,也可以避免通知失败的情况。
可以通过捕获操作系统的进程信号来获取,在 Java 语言里面,对应的是 Runtime.addShutdownHook 方法,可以注册关闭的钩子。在 RPC 启动的时候,我们提前注册关闭钩子,并在里面添加了两个处理程序,一个负责开启关闭标识,一个负责安全关闭服务对象,服务对象在关闭的时候会通知调用方下线节点。同时需要在我们调用链里面加上挡板处理器,当新的请求来的时候,会判断关闭标识,如果正在关闭,则抛出特定异常。
如果进程结束过快会造成这些请求还没有来得及应答,同时调用方会也会抛出异常。为了尽可能地完成正在处理的请求,首先我们要把这些请求识别出来。这就好比日常生活中,我们经常看见停车场指示牌上提示还有多少剩余车位,这个是如何做到的呢?如果仔细观察一下,你就会发现它是每进入一辆车,剩余车位就减一,每出来一辆车,剩余车位就加一。我们也可以利用这个原理在服务对象加上引用计数器,每开始处理请求之前加一,完成请求处理减一,通过该计数器我们就可以快速判断是否有正在处理的请求。服务对象在关闭过程中,会拒绝新的请求,同时根据引用计数器等待正在处理的请求全部结束之后才会真正关闭。但考虑到有些业务请求可能处理时间长,或者存在被挂住的情况,为了避免一直等待造成应用无法正常退出,我们可以在整个 ShutdownHook 里面,加上超时时间控制,当超过了指定时间没有结束,则强制退出应用。超时时间我建议可以设定成 10s,基本可以确保请求都处理完了。整个流程如下图所示。
4. Dubbo中是如何关闭的
Dubbo中优雅关闭代码分析如下。
5. 小结
在 RPC 里面,关闭虽然看似不属于 RPC 主流程,但如果我们不能处理得很好的话,可能就会导致调用方业务异常,从而需要我们加入很多额外的运维工作。一个好的关闭流程,可以确保使用我们框架的业务实现平滑的上下线,而不用担心重启导致的问题。其实“优雅关闭”这个概念除了在 RPC 里面有,在很多框架里面也都挺常见的,比如像我们经常用的应用容器框架 Tomcat。Tomcat 关闭的时候也是先从外层到里层逐层进行关闭,先保证不接收新请求,然后再处理关闭前收到的请求。
6. 鸣谢
RPC实战与核心原理