多机多卡运行nccl-tests和channel获取

news2025/2/25 2:35:31

nccl-tests

  • 环境
    • 1. 安装nccl
    • 2. 安装openmpi
    • 3. 单机测试
    • 4. 多机测试
      • mpirun多机多进程
      • 多节点运行nccl-tests
      • channel获取

环境

  • Ubuntu 22.04.3 LTS (GNU/Linux 5.15.0-91-generic x86_64)
  • cuda 11.8+ cudnn 8
  • nccl 2.15.1
  • NVIDIA GeForce RTX 4090 *2

1. 安装nccl

#查看cuda版本
nvcc -V

Nvidia官网下载链接 (不过好像需要注册一个Nvidia账户)

根据自己的cuda版本去寻找想要的版本,单击对应行即可显示下载步骤。

在这里插入图片描述
采取 Network Installer即可,我选择了nccl2.15.1+cuda11.8

#配置网络存储库
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.0-1_all.deb
sudo dpkg -i cuda-keyring_1.0-1_all.deb
sudo apt-get update

#安装特定版本
sudo apt install libnccl2=2.15.1-1+cuda11.8 libnccl-dev=2.15.1-1+cuda11.8

#确认系统nccl版本
dpkg -l | grep nccl

2. 安装openmpi

#apt安装openmpi
sudo apt-get update
sudo apt-get install openmpi-bin openmpi-doc libopenmpi-dev

#验证是否安装成功
mpirun --version

3. 单机测试

nccl-test GitHub链接

如何执行测试和相关参数参考readme.md即可,已经描述的很详细了。

NCCL测试依赖于MPI以在多个进程和多个节点上工作。如果你想使用MPI支持编译这些测试,需要将环境变量MPI设置为1,并将MPI_HOME设置为MPI安装的路径。

#克隆该repo
git clone https://github.com/NVIDIA/nccl-tests.git
cd nccl-tests
  
# 编译支持mpi的test
make MPI=1 MPI_HOME=/usr/lib/x86_64-linux-gnu/openmpi

成功后会在build目录下生成可执行文件

在这里插入图片描述

NCCL测试可以在多个进程、多个线程和每个线程上的多个CUDA设备上运行。进程的数量由MPI进行管理,因此不作为参数传递给测试(可以通过mpirun -np n(n为进程数)来指定)。

总的ranks数量(即CUDA设备数,也是总的gpu数量)=(进程数)*(线程数)*(每个线程的GPU数)。

可以先通过nvidia-smi topo -m命令查看机器内拓扑结构,这里是双卡,两个gpu之间连接方式是PIX(Connection traversing at most a single PCIe bridge)
在这里插入图片描述

在 2个 GPU 上运行 ( -g 2 ),扫描范围从 8 字节到 128MB :

./build/all_reduce_perf -b 8 -e 128M -f 2 -g 2

这里-b表示minBytes,-e表示maxBytes,-g表示两张卡,-f表示数据量每次乘2,如开始是8B,往后依次是16,32,64字节…
-g后面的gpu数量不能超过实际的数量,否则会报如下错误- invalid Device ordinal
在这里插入图片描述

单机执行结果如下:
在这里插入图片描述

这里执行all_reduce操作时算法带宽(algbw)和总线带宽(busbw)是一致的,并且都是随着数据量的增大而增大。关于二者的区别可见https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md#bandwidth

4. 多机测试

关于mpi的基本了解和使用,可参考这篇文章 DL分布式训练基础之openmpi

mpirun多机多进程

这里使用2个节点(126,127)。 运行mpirun命令的为头节点(这里用126),它是通过ssh远程命令来拉起其他节点(127)的业务进程的,故它需要密码访问其他host

#在126生成RSA公钥,并copy给127即可
ssh-keygen -t rsa

ssh-copy-id -i ~/.ssh/id_rsa.pub  192.168.72.127

如果ssh的端口不是22,可以在mpirun命令后添加参数-mca plm_rsh_args "-p 端口号" ,除此之外,还可以在主节点上编辑以下文件

nano ~/.ssh/config
#添加以下内容
Host 192.168.72.127
	Port 2233

指定连接到特定主机时使用的端口(例如2233),并确保在执行之前检查并设置~/.ssh/config文件的权限,使其对你的用户是私有
的:

chmod 600 ~/.ssh/config

这样配置后,当你使用SSH连接到主机192.168.72.127,SSH将使用端口2233,可以减少在‘mpirun‘命令中指定端口的需要。

然后可以进行多节点测试,节点个数对应-np 后的数字,这里新建一个hostfile内容如下,每行一个ip地址就可以

192.168.72.126
192.168.72.127

mpirun -np 2 -hostfile hostfile  -pernode \
bash -c 'echo "Hello from process $OMPI_COMM_WORLD_RANK of $OMPI_COMM_WORLD_SIZE on $(hostname)"'

在这里插入图片描述

多节点运行nccl-tests

运行以下命令,这里对应双机4卡,注意np后面的进程数*单个节点gpu数(-g 指定)=总的gpu数量,即之前提到的等式

总的ranks数量(即CUDA设备数,也是总的gpu数量)=(进程数)*(线程数)*(每个线程的GPU数)。

mpirun -np 2 -pernode \
--allow-run-as-root \
-hostfile hostfile \
-mca btl_tcp_if_include eno2  \
-x NCCL_SOCKET_IFNAME=eno2  \
./build/all_reduce_perf -b 8 -e 128M -f 2 -g 2 -c 0

避免每次命令加–allow-run-as-root

echo 'export OMPI_ALLOW_RUN_AS_ROOT_CONFIRM=1' >> ~/.bashrc
echo 'export OMPI_ALLOW_RUN_AS_ROOT=1' >> ~/.bashrc

不添加参数-mca btl_tcp_if_include eno2 的话会报错如下:Open MPI accepted a TCP connection from what appears to be a
another Open MPI process but cannot find a corresponding process entry for that peer.
在这里插入图片描述
eno2替换为自己的网卡接口名称,可通过ifconfig查看。
执行结果如下:
在这里插入图片描述
可以看到,同样的操作,同样的数据量双机比单机慢了不是一点,这里平均总先带宽0.07 GB/s,而前文的单机是3.25.

当然这里使用的是普通的千兆以太网,带宽最高1GB/s,也没有IB网卡等。
之前使用100G的网卡测试的带宽双机是可以达到1.几G,现在100G的网卡接口暂时不能用了就没有测。

channel获取

channel的概念:
nccl中channel的概念表示一个通信路径,为了更好的利用带宽和网卡,以及同一块数据可以通过多个channel并发通信,nccl会使用多channel,搜索的过程就是搜索出来一组channel。

具体一点可以参考以下文章:
如何理解Nvidia英伟达的Multi-GPU多卡通信框架NCCL? - Connolly的回答 - 知乎
https://www.zhihu.com/question/63219175/answer/2768301153

获取channel:
mpirun命令中添加参数-x NCCL_DEBUG=INFO \即可,详细信息就会输出到终端

mpirun -np 2 -pernode \
-hostfile hostfile \
-mca btl_tcp_if_include eno2 \
-x NCCL_SOCKET_IFNAME=eno2  \
-x NCCL_DEBUG=INFO  \
-x NCCL_IGNORE_DISABLED_P2P=1 \
-x CUDA_VISIBLE_DEVICES=0,1 \
./build/all_reduce_perf -b 8 -e 128M -f 2 -g 2 -c 0

执行结果:

 nThread 1 nGpus 2 minBytes 8 maxBytes 134217728 step: 2(factor) warmup iters: 5 iters: 20 agg iters: 1 validation: 0 graph: 0
#
# Using devices
  Rank  0 Group  0 Pid 685547 on      nccl4 device  0 [0xcd] NVIDIA GeForce RTX 4090
  Rank  1 Group  0 Pid 685547 on      nccl4 device  1 [0xcf] NVIDIA GeForce RTX 4090
  Rank  2 Group  0 Pid 1728006 on      nccl5 device  0 [0xcd] NVIDIA GeForce RTX 4090
  Rank  3 Group  0 Pid 1728006 on      nccl5 device  1 [0xcf] NVIDIA GeForce RTX 4090
nccl4:685547:685547 [0] NCCL INFO Bootstrap : Using eno2:10.112.205.39<0>
nccl4:685547:685547 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
nccl4:685547:685547 [0] NCCL INFO cudaDriverVersion 12020
NCCL version 2.15.1+cuda11.8
nccl4:685547:685563 [0] NCCL INFO NET/IB : No device found.
nccl4:685547:685563 [0] NCCL INFO NET/Socket : Using [0]eno2:10.112.205.39<0>
nccl4:685547:685563 [0] NCCL INFO Using network Socket
nccl4:685547:685564 [1] NCCL INFO Using network Socket
nccl5:1728006:1728006 [0] NCCL INFO cudaDriverVersion 12020
nccl5:1728006:1728006 [0] NCCL INFO Bootstrap : Using eno2:10.112.57.233<0>
nccl5:1728006:1728006 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
nccl5:1728006:1728014 [0] NCCL INFO NET/IB : No device found.
nccl5:1728006:1728014 [0] NCCL INFO NET/Socket : Using [0]eno2:10.112.57.233<0>
nccl5:1728006:1728014 [0] NCCL INFO Using network Socket
nccl5:1728006:1728015 [1] NCCL INFO Using network Socket
nccl5:1728006:1728015 [1] NCCL INFO NCCL_IGNORE_DISABLED_P2P set by environment to 1.
nccl4:685547:685564 [1] NCCL INFO NCCL_IGNORE_DISABLED_P2P set by environment to 1.
nccl4:685547:685563 [0] NCCL INFO Channel 00/02 :    0   1   2   3
nccl4:685547:685563 [0] NCCL INFO Channel 01/02 :    0   1   2   3
nccl4:685547:685563 [0] NCCL INFO Trees [0] 1/2/-1->0->-1 [1] 1/-1/-1->0->2
nccl4:685547:685564 [1] NCCL INFO Trees [0] -1/-1/-1->1->0 [1] -1/-1/-1->1->0
nccl5:1728006:1728014 [0] NCCL INFO Trees [0] 3/-1/-1->2->0 [1] 3/0/-1->2->-1
nccl5:1728006:1728015 [1] NCCL INFO Trees [0] -1/-1/-1->3->2 [1] -1/-1/-1->3->2
nccl5:1728006:1728014 [0] NCCL INFO Channel 00/0 : 1[cf000] -> 2[cd000] [receive] via NET/Socket/0
nccl4:685547:685563 [0] NCCL INFO Channel 00/0 : 3[cf000] -> 0[cd000] [receive] via NET/Socket/0
nccl5:1728006:1728014 [0] NCCL INFO Channel 01/0 : 1[cf000] -> 2[cd000] [receive] via NET/Socket/0
nccl5:1728006:1728014 [0] NCCL INFO Channel 00 : 2[cd000] -> 3[cf000] via SHM/direct/direct
nccl5:1728006:1728014 [0] NCCL INFO Channel 01 : 2[cd000] -> 3[cf000] via SHM/direct/direct
nccl4:685547:685564 [1] NCCL INFO Channel 00/0 : 1[cf000] -> 2[cd000] [send] via NET/Socket/0
nccl5:1728006:1728015 [1] NCCL INFO Channel 00/0 : 3[cf000] -> 0[cd000] [send] via NET/Socket/0
nccl4:685547:685563 [0] NCCL INFO Channel 01/0 : 3[cf000] -> 0[cd000] [receive] via NET/Socket/0
nccl4:685547:685563 [0] NCCL INFO Channel 00 : 0[cd000] -> 1[cf000] via SHM/direct/direct
nccl4:685547:685563 [0] NCCL INFO Channel 01 : 0[cd000] -> 1[cf000] via SHM/direct/direct
nccl4:685547:685564 [1] NCCL INFO Channel 01/0 : 1[cf000] -> 2[cd000] [send] via NET/Socket/0
nccl5:1728006:1728015 [1] NCCL INFO Channel 01/0 : 3[cf000] -> 0[cd000] [send] via NET/Socket/0
nccl4:685547:685564 [1] NCCL INFO Connected all rings
nccl4:685547:685564 [1] NCCL INFO Channel 00 : 1[cf000] -> 0[cd000] via SHM/direct/direct
nccl4:685547:685564 [1] NCCL INFO Channel 01 : 1[cf000] -> 0[cd000] via SHM/direct/direct
nccl5:1728006:1728014 [0] NCCL INFO Connected all rings
nccl4:685547:685563 [0] NCCL INFO Connected all rings
nccl5:1728006:1728015 [1] NCCL INFO Connected all rings
nccl5:1728006:1728015 [1] NCCL INFO Channel 00 : 3[cf000] -> 2[cd000] via SHM/direct/direct
nccl5:1728006:1728015 [1] NCCL INFO Channel 01 : 3[cf000] -> 2[cd000] via SHM/direct/direct
nccl4:685547:685563 [0] NCCL INFO Channel 00/0 : 2[cd000] -> 0[cd000] [receive] via NET/Socket/0
nccl5:1728006:1728014 [0] NCCL INFO Channel 00/0 : 0[cd000] -> 2[cd000] [receive] via NET/Socket/0
nccl4:685547:685563 [0] NCCL INFO Channel 01/0 : 2[cd000] -> 0[cd000] [receive] via NET/Socket/0
nccl5:1728006:1728014 [0] NCCL INFO Channel 01/0 : 0[cd000] -> 2[cd000] [receive] via NET/Socket/0
nccl4:685547:685563 [0] NCCL INFO Channel 00/0 : 0[cd000] -> 2[cd000] [send] via NET/Socket/0
nccl5:1728006:1728014 [0] NCCL INFO Channel 00/0 : 2[cd000] -> 0[cd000] [send] via NET/Socket/0
nccl4:685547:685563 [0] NCCL INFO Channel 01/0 : 0[cd000] -> 2[cd000] [send] via NET/Socket/0
nccl5:1728006:1728014 [0] NCCL INFO Channel 01/0 : 2[cd000] -> 0[cd000] [send] via NET/Socket/0
nccl4:685547:685563 [0] NCCL INFO Connected all trees
nccl4:685547:685563 [0] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 512 | 512
nccl4:685547:685563 [0] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer
nccl5:1728006:1728014 [0] NCCL INFO Connected all trees
nccl5:1728006:1728014 [0] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 512 | 512
nccl5:1728006:1728014 [0] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer
nccl4:685547:685564 [1] NCCL INFO Connected all trees
nccl4:685547:685564 [1] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 512 | 512
nccl4:685547:685564 [1] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer
nccl5:1728006:1728015 [1] NCCL INFO Connected all trees
nccl5:1728006:1728015 [1] NCCL INFO threadThresholds 8/8/64 | 32/8/64 | 512 | 512
nccl5:1728006:1728015 [1] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer
nccl4:685547:685563 [0] NCCL INFO comm 0x55aec4722370 rank 0 nranks 4 cudaDev 0 busId cd000 - Init COMPLETE
nccl4:685547:685564 [1] NCCL INFO comm 0x55aec472e1e0 rank 1 nranks 4 cudaDev 1 busId cf000 - Init COMPLETE
nccl5:1728006:1728014 [0] NCCL INFO comm 0x557f5e599d40 rank 2 nranks 4 cudaDev 0 busId cd000 - Init COMPLETE
nccl5:1728006:1728015 [1] NCCL INFO comm 0x557f5e5a5f20 rank 3 nranks 4 cudaDev 1 busId cf000 - Init COMPLETE
nccl4:685547:685547 [0] NCCL INFO comm 0x55aec4722370 rank 0 nranks 4 cudaDev 0 busId cd000 - Destroy COMPLETE
nccl5:1728006:1728006 [0] NCCL INFO comm 0x557f5e599d40 rank 2 nranks 4 cudaDev 0 busId cd000 - Destroy COMPLETE
nccl4:685547:685547 [0] NCCL INFO comm 0x55aec472e1e0 rank 1 nranks 4 cudaDev 1 busId cf000 - Destroy COMPLETE
nccl5:1728006:1728006 [0] NCCL INFO comm 0x557f5e5a5f20 rank 3 nranks 4 cudaDev 1 busId cf000 - Destroy COMPLETE

最后就是上图中的带宽展示,这里没有放上去。

以上就是双机4卡nccl执行的一个过程,后续计划结合nccl和nccl-tests的源代码分析一下总体流程,重点是channel部分

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1446180.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

shiny,一个好用的 Python 库!

更多Python学习内容&#xff1a;ipengtao.com 大家好&#xff0c;今天为大家分享一个好用的 Python 库 - shiny。 Github地址&#xff1a;https://github.com/posit-dev/py-shiny Python Shiny 是一个用于创建交互式 Web 应用程序的开源库&#xff0c;它基于 Flask 和 React 技…

[JavaWeb玩耍日记]Maven的安装与使用

目录 一.作用 二.安装 三.使用 2.对项目使用compile命令进行编译,看看新的文件会在哪里产生&#xff1f; 3.需要认识的命令 4.Maven对项目执行不同命令的生命周期特点&#xff1f; 5.如何导入工程外的Maven&#xff1f; 6.如何直观地查看Maven导入了哪些工程或哪些jar包…

行业科普应用分享 | 用于安全和安保的仪器仪表

【前言】 物联网带来了对安全和安保的新要求。利用物联网&#xff0c;运营商可以从复杂和分布式的装置中获益。此外&#xff0c;自主系统在现代工业的运作中正变得越来越重要。 从制造业到农业&#xff0c;这些远程操作需要仪器提供持续监测&#xff0c;以提供安全和保障。这…

一、Docker部署MySQL

Docker部署MySQL 一、安装Docker二、拉取MySQL镜像1.选择拉取版本2.拉取镜像 三、启动MySQL1.确定好挂载目录2.启动3.查看是否启动4.开启远程访问权限 一、安装Docker 安装教程&#xff1a;https://qingsi.blog.csdn.net/article/details/131270071 二、拉取MySQL镜像 1.选择…

使用 FFmpeg 将视频转换为 GIF 动画的技巧

使用 FFmpeg 将视频转换为 GIF 动画 FFmpeg 可以将视频转换为 GIF 动画&#xff0c;方法如下&#xff1a; 1. 准备工作 确保您已经安装了 FFmpeg。 熟悉 FFmpeg 的命令行使用。 了解 GIF 动画的基本知识。 2. 基本命令 ffmpeg -i input.mp4 output.gif 3. 参数说明 -i in…

如何编译zlib?

学习文章&#xff1a;windows zlib库编译步骤_nmake 编译 zlib-CSDN博客 记录关键步骤&#xff1a; 打开 执行&#xff1a; 先cd到该目录&#xff1a; C:\Users\xxx\Downloads\zlib-1.2.11\contrib\masmx86 (这是我的zlib源码的下载路径&#xff09; 执行bld_ml32.bat 再…

Xcode配置GLFW GLAD (MAC)

这里的GLFW用的是静态链接 博主反复修改&#xff0c;实在是没能找到为什么用动态会出现线程报错 下载GLAD:版本我一般是选倒数第二新&#xff0c;profile记得选core 点击GENRATE 点glad.zip获得下载 下载GLFW 点击download 最后&#xff0c;将两个文件都放到项目里面去 打开…

Mac如何安装python?

一、问题 Mac如何安装python&#xff1f; 二、解决 1、系统自带python Mac系统均自带Python环境&#xff0c;用户在终端输入“python3”命令就可以运行&#xff0c;如图所示 2、官网下载 Download Python | Python.org &#xff08;1&#xff09;在Download下找到macOS &am…

数据库基础学习笔记

一.基础概念 数据库、数据库管理系统、SQL 主流数据库&#xff1a; mysql的安装&#xff1a;略 mysql图形化界面的安装&#xff1a;略 二.数据模型 1). 关系型数据库&#xff08;RDBMS&#xff09; 概念&#xff1a;建立在关系模型基础上&#xff0c;由多张相互连接的二维表…

【python】Fraction类详解及生成分数四则运算“试卷”

文章目录 一、前言实验所需的库终端指令Fraction类1. Fraction(numerator, denominator)&#xff1a;2. Fraction(numerator)3. Fraction()4. 分数作参数5. 负分数作参数6. 字符串作参数7. 小数作参数8. 科学计数法9. 浮点数作参数10. 浮点数精度问题11. Decimal对象作参数 二、…

代码随想录刷题笔记 DAY 23 | 修剪二叉搜索树 No.669 | 将有序数组转换为二叉搜索树 No.108 | 把二叉搜索树转换为累加树 No.538

文章目录 Day 2301. 修剪二叉搜索树&#xff08;No. 669&#xff09;1.1 题目1.2 笔记1.3 代码 02. 将有序数组转换为二叉搜索树&#xff08;No. 108&#xff09;2.1 题目2.2 笔记2.3 代码 03. 把二叉搜索树转换为累加树&#xff08;No. 538&#xff09;3.1 题目3.2 笔记3.3 代…

EasyCaptcha,开源图形验证码新标杆!

引言&#xff1a; 随着互联网的普及&#xff0c;验证码已成为网站和应用程序中不可或缺的安全组件。它能够有效地防止自动化攻击、垃圾邮件和机器人活动。在众多验证码解决方案中&#xff0c;Easy-captcha以其简单易用和高度可定制的特点受到了开发者的青睐。本文将指导读者如…

LeetCode:69.x的平方根

嗨嗨嗨&#xff0c;二分又来了&#xff0c;淦它&#xff0c; 这个题官解是&#xff0c;C函数法&#xff0c;二分&#xff0c;和牛顿迭代法&#xff08;暂且搁置&#xff09;&#xff0c; 当然还有暴力&#xff08;不必讨论&#xff0c;就从0开始一个一个试&#xff09;&#…

Ubuntu Desktop - scrolling (Terminal 缓存更多终端历史输出内容)

Ubuntu Desktop - scrolling [Terminal 缓存更多终端历史输出内容] 1. ubuntu-14.04.5-desktop-amd64.iso2. ubuntu-16.04.3-desktop-amd64.isoReferences Terminal -> 右键 Profiles -> Profile Preferences 1. ubuntu-14.04.5-desktop-amd64.iso 2. ubuntu-16.04.3-de…

IM聊天系统为什么需要做消息幂等?如何使用Redis以及Lua脚本做消息幂等【第12期】

0前言 消息收发模型 第一张图是一个时序图&#xff0c;第二张图是一个标清楚步骤的流程图&#xff0c;更加清晰。消息的插入环节主要在2步。save部分。主要也是对这个部分就行消息幂等的操作。 前情提要&#xff1a;使用Redis发布 token 以及lua脚本来共同完成消息的幂等 目…

数据结构(4) 链表(链式存储)

链表&#xff08;链式存储&#xff09; 单链表定义基本操作的实现单链表的插入按位序插入指定节点的前插指定节点的后插 单链表的删除 小结 单链表 定义 顺序表优点:可随机存取&#xff0c;存储密度高&#xff0c;缺点:要求大片连续空间&#xff0c;改变容量不方便。 单链表优…

winprop二次开发

winprop二次开发 前言工具1——整合多个天线结果用途代码实现 工具2——wallman辅助工具 前言 工作需求&#xff0c;对该软件进行简单地二次开发&#xff0c;都是一些挺简单的代码&#xff0c;单纯是为了上传之后将其从本地删除 工具1——整合多个天线结果 用途 winprop最终…

MIT-Missing Semester_Topic 3:Editors (Vim) 练习题

文章目录 练习一练习二练习三练习四练习五练习六练习七练习八 本 Topic 的 MIT 讲解网页&#xff08;练习题未给解答&#xff09; 练习一 自行完成 vimtutor。vimtutor 是 Vim 本身附带的一个入门教程&#xff0c;在 shell 中直接输入 vimtutor 便能运行。注意该教程在 8024 大…

第2讲投票系统后端架构搭建

创建项目时&#xff0c;随机选择一个&#xff0c;后面会生成配置properties文件 生成文件 maven-3.3.3 设置阿里云镜像 <?xml version"1.0" encoding"UTF-8"?><!-- Licensed to the Apache Software Foundation (ASF) under one or more cont…

助力智能化农田作物除草,基于轻量级YOLOv8n开发构建农田作物场景下玉米苗、杂草检测识别分析系统

在我们前面的系列博文中&#xff0c;关于田间作物场景下的作物、杂草检测已经有过相关的开发实践了&#xff0c;结合智能化的设备可以实现只能除草等操作&#xff0c;玉米作物场景下的杂草检测我们则少有涉及&#xff0c;这里本文的主要目的就是想要基于最新的YOLOv8下最轻量级…