【5G NR】【一文读懂系列】移动通讯中使用的信道编解码技术-Viterbi译码原理

news2025/1/11 22:45:49

目录

一、引言

二、Viterbi译码的基本原理

2.1 卷积码与网格图

2.2 Viterbi算法的核心思想

2.3 路径度量与状态转移

三、Viterbi译码算法工作原理详解

3.1 算法流程

3.2 关键步骤

3.3 译码算法举例

3.4 性能特点

四、Viterbi译码的应用场景

4.1 移动通信系统

4.2 卫星通信系统

4.3 磁盘存储系统

五、Viterbi译码的优缺点分析

5.1 优点

5.2 缺点

六、Matlab算法示例

七、总结


一、引言

在数字通信领域,为了确保信息的可靠传输,我们常常需要对发送的数据进行编码,并在接收端进行译码。其中,Viterbi译码是一种广泛使用的最大似然序列估计算法,用于在存在噪声和干扰的通信信道中恢复原始数据。本文将详细介绍Viterbi译码的基本原理、应用场景、优缺点,并与其他译码技术进行比较。

二、Viterbi译码的基本原理

Viterbi译码算法是一种基于动态规划的最优路径搜索算法,它由Andrew Viterbi于1967年提出,最初用于卷积码的解码。Viterbi译码通过寻找最可能的发送序列来估计原始信息,即在所有可能的发送序列中,选择一条与接收序列差异最小的路径作为最优估计。

2.1 卷积码与网格图

在理解Viterbi译码之前,我们需要先了解卷积码。卷积码是一种纠错编码方式,它通过将输入数据与编码器的状态进行卷积运算来生成输出码字。卷积码的特点是可以利用历史信息,使得码字之间存在一定的相关性。这种相关性可以通过网格图来表示,网格图中的每一条路径都对应一个可能的发送序列。

2.2 Viterbi算法的核心思想

Viterbi算法的核心思想是在网格图中搜索最优路径。它按照时间顺序逐步计算每个状态的最优路径度量值,并保留到达每个状态的最优路径。在每一步中,算法都会根据当前接收到的符号和状态转移概率来更新路径度量值。最终,算法选择一条具有最小路径度量值的路径作为最优估计。

2.3 路径度量与状态转移

路径度量是衡量路径优劣的指标,通常定义为路径上所有分支的度量值之和。分支度量值可以根据接收符号与预期符号之间的差异来计算,差异越小,度量值越小。状态转移是指从一个状态转移到另一个状态的过程,每个状态转移都对应一个分支度量值。

三、Viterbi译码算法工作原理详解

Viterbi译码算法是一种最大似然序列估计(MLSE)算法,用于在存在噪声的情况下解码卷积码,它是由Andrew Viterbi在1967年提出的。该算法通过动态规划的方式,寻找最有可能通过卷积码编码器和噪声信道传输的原始信息序列。

3.1 算法流程

  1. 初始化:确定所有状态在时刻t=0的路径度量值。对于起始状态,路径度量通常设为0,而对于其他所有状态,路径度量则设为无穷大(表示不可能的状态)。

  2. 递推(路径度量计算与更新):对于每个时刻t和每个状态s,计算到达该状态的所有可能路径的度量值。路径度量通常基于接收序列和假设路径之间的差异,如汉明距离或欧氏距离。选择具有最小度量值的路径作为幸存路径,并更新路径度量和路径历史。

  3. 终止:在达到接收序列的末尾时,选择具有最小路径度量的状态作为最终状态。

  4. 回溯:从最终状态开始,沿着幸存路径回溯到初始状态,从而确定最可能的原始信息序列。

3.2 关键步骤

  • 分支度量计算:对于每个状态和每个可能的输入比特,计算从当前状态转移到下一状态的分支度量。这通常涉及计算接收序列与假设分支之间的差异。

  • 加-比较-选择(ACS)操作:对于每个状态,将所有进入该状态的路径的度量值相加,并与当前状态的幸存路径度量进行比较。选择具有最小度量值的路径作为新的幸存路径。

  • 路径历史存储:为了能够在最后进行回溯,需要存储每个状态和时刻的幸存路径历史信息。

3.3 译码算法举例

维特比算法就是寻找一条路径,使得该路径的编码输出与接收序列的汉明距离最小,其关键就是路径的寻找过程。

  • 根据网格图(Trellis)(【5G NR】【一文读懂系列】移动通讯中使用的信道编解码技术-卷积码原理),首先,我们从第一个状态出发,到下一个状态有两种路径,分别计算这两条路径的编码输出与接收序列的汉明距离(注意,此时不能进行任何舍弃,不能将距离大的舍弃)。

  • 第二步,从第一步到达的两个状态出发,继续寻找路径,由于2位移位寄存器共有四种状态,因此此时我们得到到达所有状态的路径(无论是否最优)

  • 第三步,从这四个状态出发,继续寻找路径,此时我们将得到8种路径。这一步是算法的关键,此时要保留到达各状态的最短路径,舍弃其他路径,即舍弃后仍保留四条路径,且四条路径分别对应四个状态(无论该状态以后的路径如何选择,当到达该状态时,该状态以前的路径一定是最优的)。对于(n,k,N)卷积码,进行维特比译码时,当到达第N步时,要对路径进行舍弃,只保留幸存路径的信息,储存幸存路径以及当前的累计距离。

  • 第四步:继续进行路径寻找,同样只保留每个状态下的幸村路径,直至步数达到输入序列的个数。

维特比算法复杂度:每步要比较2×2^(N-1)条路径(每个状态两条),计算量与步数(输入码的个数)成正比。

3.4 性能特点

  • 最优性能:在给定足够长的接收序列时,Viterbi译码器能够提供最大似然序列估计,即它能够找到最有可能的原始信息序列。

  • 复杂度:Viterbi译码的复杂度随约束长度的增加而指数增长。然而,通过有效的实现技术(如量化和剪枝),可以降低实际应用的复杂度。

  • 延迟:由于Viterbi译码是一种块处理算法,它通常会在接收到整个块或一段足够长的序列后才开始解码,这可能会导致一定的解码延迟。

  • 适用于多种信道:Viterbi译码不仅适用于加性白高斯噪声(AWGN)信道,还适用于其他类型的信道,如瑞利衰落信道和多径信道。

四、Viterbi译码的应用场景

Viterbi译码广泛应用于各种数字通信系统,特别是那些对误码率要求较高的场景。以下是一些典型的应用场景:

4.1 移动通信系统

在移动通信系统中,由于信道条件复杂多变,信号在传输过程中容易受到干扰和衰落。Viterbi译码可以有效地纠正由于信道干扰引起的误码,提高通信系统的可靠性。

4.2 卫星通信系统

卫星通信系统面临着长距离传输和大气层干扰等挑战。Viterbi译码结合其他纠错编码技术,可以在恶劣的信道条件下实现数据的可靠传输。

4.3 磁盘存储系统

在磁盘存储系统中,由于磁盘表面的缺陷、磁头的不稳定性以及外部干扰等因素,读取数据时可能会发生错误。Viterbi译码可以提高磁盘存储系统的数据恢复能力,减少读取错误的发生。

五、Viterbi译码的优缺点分析

5.1 优点

(1)性能优越:Viterbi译码是一种最大似然序列估计算法,它能够在存在噪声和干扰的信道中实现较低的误码率。

(2)适用于多种信道条件:Viterbi译码算法对信道条件的变化具有较强的适应性,可以应用于不同类型的信道。

(3)可与其他技术结合使用:Viterbi译码可以与其他纠错编码技术、调制技术等结合使用,进一步提高通信系统的性能。

5.2 缺点

(1)计算复杂度较高:Viterbi译码算法的计算复杂度随约束长度的增加而呈指数增长,这限制了其在一些实时性要求较高的场景中的应用。

(2)存储需求较大:为了实现Viterbi译码,需要存储大量的路径度量值和状态信息,这对硬件的存储能力提出了更高的要求。

(3)对初始状态敏感:Viterbi译码的性能受到初始状态选择的影响,如果初始状态选择不当,可能会导致译码性能下降。

六、Matlab算法示例

下面是一个简单的Viterbi译码算法的Matlab实现示例。请注意,这个例子假设你已经有了卷积码的生成多项式、输入信号(接收序列)以及其他必要的参数。

function decoded_bits = viterbi_decoder(received_signal, constraint_length, generator_polynomials)  
    % received_signal: 接收到的信号序列(1 x N 向量)  
    % constraint_length: 约束长度(标量)  
    % generator_polynomials: 生成多项式的矩阵形式(K-1 x R 矩阵,K是约束长度,R是输出数量)  
    % decoded_bits: 译码后的比特序列(1 x (N/R) 向量,R是输出数量)  
      
    % 参数检查  
    if nargin < 3  
        error('Not enough input arguments.');  
    end  
      
    % 初始化变量  
    N = length(received_signal); % 接收信号长度  
    R = size(generator_polynomials, 2); % 输出数量(速率为1/R)  
    num_states = 2^(constraint_length - 1); % 状态数  
    trellis = poly2trellis(constraint_length - 1, generator_polynomials); % 创建网格结构  
      
    % 初始化路径度量和路径历史  
    path_metrics = zeros(num_states, N/R); % 路径度量矩阵  
    path_metrics(:, 1) = inf; % 初始化为无穷大  
    path_history = cell(num_states, N/R); % 路径历史单元数组  
      
    % 开始状态(全零状态)的路径度量和历史  
    start_state = 0;  
    path_metrics(start_state + 1, 1) = 0; % Matlab索引从1开始  
    path_history{start_state + 1, 1} = start_state;  
      
    % Viterbi算法主循环  
    for t = 2:N/R  
        for s = 0:num_states-1  
            % 计算到达当前状态的所有可能的前一状态  
            prev_states = viterbistate(trellis, s);  
              
            % 对于每个可能的前一状态,计算分支度量  
            for ps = prev_states  
                branch_metrics = hammingdist(received_signal((t-1)*R + 1:t*R), ...  
                                            encode(trellis, [path_history{ps + 1, t-1}, 0], 0, 'truncation', 'conventional')*2 - 1);  
                  
                % 计算路径度量并更新如果找到更好的路径  
                metrics = path_metrics(ps + 1, t-1) + branch_metrics;  
                if metrics < path_metrics(s + 1, t)  
                    path_metrics(s + 1, t) = metrics;  
                    path_history{s + 1, t} = ps;  
                end  
            end  
        end  
    end  
      
    % 回溯找到最佳路径  
    [~, end_state] = min(path_metrics(:, end));  
    decoded_bits = zeros(1, N/R);  
    for t = N/R:-1:1  
        decoded_bits(t) = mod(end_state, 2); % 提取最后一位作为译码比特  
        end_state = floor(end_state / 2); % 移除最后一位以回溯  
        if t > 1  
            [~, end_state] = ismember(path_history{end_state + 1, t}, 0:num_states-1); % 找到前一状态  
        end  
    end  
      
    % 翻转译码比特序列,因为我们是从后向前回溯的  
    decoded_bits = fliplr(decoded_bits);  
end  
  
% 注意:此代码片段是一个概念示例,可能需要针对您的特定应用场景进行调整。  
% 实际使用中,请确保所有输入参数都是正确和有效的,并考虑代码的边界情况和错误处理。  
% 此外,'encode' 函数用于模拟卷积编码过程,可能需要根据您的具体编码方案进行修改。  
% 代码中用到的 'hammingdist' 函数计算汉明距离,用于计算分支度量。如果您的信号不是二进制或者有不同的度量标准,请相应修改。

七、总结

Viterbi译码作为一种高效的纠错编码技术,在数字通信领域具有广泛的应用前景。它通过动态规划的方法在网格图中搜索最优路径,实现了在低信噪比和复杂信道条件下的可靠数据传输。卷积码和Viterbi算法在非常低的信噪比下性能不佳,复杂度随约束长度增加而增加;Turbo码是一种高级的前向纠错码,由两个或多个卷积编码器和一个随机交织器组成,使用迭代解码来逼近最大似然解码的性能,在较低信噪比下接近香农极限的性能。后续我们会介绍Turbo码原理和解码算法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1443221.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【GO语言卵细胞级别教程】04.GO函数介绍

【GO语言卵细胞级别教程】04.GO函数介绍 目录&#xff1a; 【GO语言卵细胞级别教程】04.GO函数介绍0.创建项目1.函数的引入2.注意事项3.详细介绍3.1 形参介绍 0.创建项目 创建目录 执行命令加载模块 cd 02.gostudy目录下 1.进入目录下 cd 02.gostudy 2.初始化模块变量 go …

django admin 自定义界面时丢失左侧导航 nav_sidebar

只显示了自定义模板的内容&#xff0c;左侧导航没有显示出来。 原因&#xff1a;context 漏掉了&#xff0c;要补上。 # 错误写法&#xff08;左侧导航不显示&#xff09;def changelist_view(self, request, extra_contextNone):form CsvImportForm()payload {"form&qu…

【linux温故】CFS调度

写在前面 网上关于CFS 调度器的文章多如牛毛&#xff0c;没必要自己写。很多文章写的都非常好。 很多文章里&#xff0c;关键的技术点&#xff0c;都是一样的&#xff0c;只是各个文章说法不一样。 掌握了核心的&#xff0c;关键的&#xff0c;其他的&#xff0c;如果工作中…

【Spring框架】Spring事务的原理

目录 〇、对类或方法的Spring事务属性进行解析 0.1 解析标签 0.2 注册 InfrastructureAdvisorAutoProxyCreator 0.3 判断目标方法是否适合 canApply 0.4 匹配标签 match 0.5 小结 一、Spring事务的实现 1.1 准备事务 1.1.1 收集Transactional注解属性信息&#xff0c;…

【第六天】c++虚函数多态

一、多态的概述 多态按字面的意思就是多种形态。当类之间存在层次结构&#xff0c;并且类之间是通过继承关联&#xff08;父类与子类&#xff09;时&#xff0c;就会用到多态。 C 多态意味着调用成员函数时&#xff0c;会根据调用函数的对象的类型来执行不同的函数。 静态多态&…

改变终端安全的革命性新兴技术:自动移动目标防御技术AMTD

自动移动目标防御技术通过启用终端配置的自适应防御来改变终端检测和响应能力。产品领导者可以实施AMTD来确保实时威胁响应&#xff0c;并减少检测和响应安全威胁所需的时间。 主要发现 通过动态修改系统配置、软件堆栈或网络特征&#xff0c;自动移动目标防御&#xff08;AMTD…

[word] word斜线表头怎么做? #微信#媒体#职场发展

word斜线表头怎么做&#xff1f; 在制作Word表格的时候&#xff0c;经常会用到两栏三栏的表头&#xff0c;这样两栏、三栏的斜线表头你都是怎么样制作的呢&#xff1f;今天给大家分享在Word中制作两栏、三栏斜线表头的多种制作方法。 1、边框法 选中第一个单元格&#xff0c…

基于JSP的网上购书系统

点击以下链接获取源码&#xff1a; https://download.csdn.net/download/qq_64505944/88825694?spm1001.2014.3001.5503 Java项目-15 源码论文数据库配置文件 基于JSP的网上购书系统 摘要 在当今的社会中&#xff0c; 随着社会经济的快速发展以及计算机网络技术和通讯技术…

第8章 多线程

8.1 线程概述 人们在日常生活中&#xff0c;很多事情都是可以同时进行的。例如&#xff0c;一个人可以一边听音乐&#xff0c;一边打扫房间&#xff0c;可以一边吃饭&#xff0c;一边看电视。在使用计算机时&#xff0c;很多任务也是可以同时进行的。例如&#xff0c;可以一边…

LabVIEW伺服阀性能参数测试

LabVIEW伺服阀性能参数测试 伺服阀作为电液伺服系统中的核心元件&#xff0c;其性能参数的准确测试对保证系统整体性能至关重要。开发了一种基于LabVIEW软件开发的伺服阀性能参数测试系统&#xff0c;提高测试的自动化程度和精确性&#xff0c;同时降低操作复杂度和成本。 传…

分享86个表单按钮JS特效,总有一款适合您

分享86个表单按钮JS特效&#xff0c;总有一款适合您 86个表单按钮JS特效下载链接&#xff1a;https://pan.baidu.com/s/1WwQGFPWv8464JBcuEMJZ_Q?pwd8888 提取码&#xff1a;8888 Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 学习知识费力气&#xff0c;…

人工智能算法:理解其工作原理及其在现实世界中的应用

随着科技的飞速发展&#xff0c;人工智能&#xff08;AI&#xff09;已逐渐成为我们生活中不可或缺的一部分。从智能语音助手到自动驾驶汽车&#xff0c;再到医疗诊断系统&#xff0c;人工智能算法正以前所未有的速度改变着我们的世界。本文将带您深入探讨人工智能算法的工作原…

模运算的变换公式

这个构造很重要&#xff0c;变形都是基于这个实现的 分配律 &#xff08;1&#xff09; 因此 (a*b) % p ((a%p) * (b%p)) % p (q*r) % p &#xff08;2&#xff09; (ab)%p(a%pb%p)%p &#xff08;3&#xff09; ((ab)%pc)%p ( (ac)%p (b*c)%p )%p

HTTPS证书终于挥下了无情的镰刀-HTTPS证书自动续签方案

现在网站基本都上了 HTTPS 证书 阿里云 SSL 产品日前发布公告&#xff0c;公告显示自 2023 年 11 月 14 日开始生效厂商策略&#xff0c;对于免费提供的 SSL 证书签发后证书有效期统一为 3 个月&#xff0c;不再免费提供 1 年版免费证书。想要 1 年的需要购买 68 块一年。终于…

开源大数据集群部署(十)Ranger usersync部署

作者&#xff1a;櫰木 ranger usersync部署 解压包 [roothd1.dtstack.com ranger]# pwd /opt/ranger [roothd1.dtstack.com ranger]# tar -zxvf ranger-2.3.0-usersync.tar.gz -C /opt/ [roothd1.dtstack.com ranger]# cd ranger-2.3.0-usersync修改配置install.properties…

初识String类和String类的拓展

前言&#xff1a;以下是Java中String类的知识点与一些常见问题和注意事项&#xff0c;如有讲解不妥&#xff0c;请见谅&#xff01; 目录 1.String类的创建及常见API &#xff08;1&#xff09;String类的四种创建方式&#xff1a; 补充&#xff1a;字符串转化成字符数组 / …

使用cocos2d-console初始化一个项目

先下载好cocos2d-x的源码包 地址 https://www.cocos.com/cocos2dx-download 这里使用的版本是 自己的电脑要先装好python27 用python安装cocos2d-console 看到项目中有个setup.py的一个文件 python setup.py 用上面的命令执行一下。 如果执行正常的话回出现上面的图 然后…

使用python-numpy实现一个简单神经网络

目录 前言 导入numpy并初始化数据和激活函数 初始化学习率和模型参数 迭代更新模型参数&#xff08;权重&#xff09; 小彩蛋 前言 这篇文章&#xff0c;小编带大家使用python-numpy实现一个简单的三层神经网络&#xff0c;不使用pytorch等深度学习框架&#xff0c;来理解…

【射影几何15】python双曲几何工具geometry_tools

目录 一、说明二、​环境问题&#xff1a;如何安装三、实现一个简单的例子四、绘制双曲组五、使用有限状态自动机加快速度六、资源和代码 一、说明 Geometry_tools 是一个 Python 包&#xff0c;旨在帮助您处理和可视化双曲空间和射影空间上的群动作。 该包主要构建在 numpy、…

【大厂AI课学习笔记】【1.5 AI技术领域】(10)对话系统

对话系统&#xff0c;Dialogue System&#xff0c;也称为会话代理。是一种模拟人类与人交谈的计算机系统&#xff0c;旨在可以与人类形成连贯通顺的对话&#xff0c;通信方式主要有语音/文本/图片&#xff0c;当然也可以手势/触觉等其他方式 一般我们将对话系统&#xff0c;分…