从一到无穷大 #23 《流计算系统图解》书评

news2024/11/20 15:34:15

在这里插入图片描述本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。

本作品 (李兆龙 博文, 由 李兆龙 创作),由 李兆龙 确认,转载请注明版权。

文章目录

  • 引言
  • 内容
  • 总结

引言

春节假期回到家里断然是不会有看纸质书的时间的。造化弄人,二月三号早上十一点的飞机延误到一点多,原本三小时不到的阅读时间延长为五个小时,也给了我看完这本书的机会。

第一次了解到这本书是Tison在朋友圈发了他写的书评[2],开头便是:

值得一读,尤其是对开始开发流计算任务或系统一到两年,初步实现过一些功能或作业,但是还没有对流式系统建立起系统认识的开发者。

Tison参与开源的起家项目就是Flink。而我对于流计算系统接触起源于时序数据库的流式计算(降采样),时序数据的以目前使用的场景来看,绝大多数还是把分钟/秒级别数据基于SQL规则降维度/不降维度(对应group by tag/*)到小时/天级别,这样的需求大多数决策者会在写入链路上加一个Flink/Spark,将数据本身处理后写入时序数据库,这也导致业务成本上相当一部分是在Flink/Spark上的。

我们可以看到TDengine的官网上将缓存、流计算,数据订阅以及时序数据库的功能闭环在TDengine内部,并将此作为卖点之一,核心是为了降低系统设计复杂度和运行成本,并标榜自己为时序大数据处理平台。

在这里插入图片描述
我对于流计算系统的浅薄了解便来自于这里。事实上TDengine包括我们的实现标榜为流计算系统并不完全正确,准确的说应该窗口仅为时间,无状态的,且非DAG的简化批处理系统,但是这样的场景对于目前绝大多数需求完全够用,因为目的是为了加速查询而不是给业务赋能。

我参与了腾讯新一代时序数据库从立项到上云的全过程,并实现了对于系统内部简化流计算能力的支持,所以非常符合“开始开发流计算任务或系统一到两年,初步实现过一些功能或作业”的人的,这也是读这本书的主要原因。

在开始书评之前,以TDengine这张图为背景,我以我浅薄的知识评价下在决策者的角度我会怎样使用时序数据库。

  1. 首先我认为时序数据库的流式计算能力是可以解决时序场景中的绝大多数分析需求的,所以我愿意尝试这里的能力。但是对于是否降本我持怀疑态度,因为系统内部执行流计算系统需要大量的内存,尤其是在流计算任务较多时(每个measurement一个,这个数字会极度膨胀),这个时候扩容成了唯一的方法,如果只按照读写的能力去申请资源,加上流计算的资源消耗存在内存风险。但也并不是没有显而易见的好处,即数据库自治,绝大多数情况只有数据库自己知道该如何较优构建降采样和流计算。
  2. kafka的钱是省不了的,这是系统的最后兜底,假如我是一个CEO不可能把我身家性命放在“时序大数据处理平台”的,而且业务数据还需要做更高级的分析需求(降维度,接入用户内部分析系统等),时序数据库的流计算短期能很难看到超越专业流计算系统的可能,所以接受到业务数据后架一个kafka是必要的。
  3. Cache功能完全可以集成到时序数据库内部,这里有两个场景,1. 系统需要快速将最新数据返回给应用程序 2. 相同sql数据缓存,实际查询只查询两次sql的时间差值内的数据,减少CPU/内存消耗;时序数据库集成这些功能是完全可行的,对于我们开发的多模数据库,可以在用户的资源内起一个SSD Redis db,存储大量数据在SSD中,在增加了存储利用率的同时减少了用户查询时延。

内容

若河床上没有岩石,溪流就不会有歌声

第一章阐述了应用程序,后台服务,批处理系统,流处理系统之间的区别,并讨论多阶段架构,为后续引出DAG做铺垫。

先解决问题,再编写代码

第二章引入收费站的例子,指出基于Web服务构建存在流量增加时请求延迟引发了系统迟滞,导致结果不准确的问题,因而引出使用流系统,并指出流系统的核心概念由事件,作业,源,算子和流构成,处理引擎由源执行器,算子执行器和作业启动器构成。

九个人不可能再一个月造出一个孩子

第三章介绍了并行化和数据分组,这可以解决分布式系统的一个根本挑战,即如何扩展系统以增加吞吐量,或者说如何在更短的时间处理更多的数据。并行化包含数据并行和任务并行,前者含义为将一个任务的不同子集交给不同的执行单元,后者含义为在不同的数据上运行相同的任务。章节的后续引入事件分发器,并提出分组概念,为了下游组件可以高效的并行处理上游事件,这和kafka中的partition概念基本一致。

糟糕的程序员担心代码,优秀的程序员担心数据结构和它们之间的关系

第四章引入欺诈检测的case,与之前不同,这时的流并不是一条直线,在数据源之后需要执行多种检测,这就引出了DAG,并解释了算子的扇入扇出,同时指出扇出时发出的事件可以只被推送到某些输出队列中,此外不同的输出队列中可能拥有不同的数据。

人们从来没有足够的时间去做正确的事情,但总有足够的时间去重做一遍

第五章介绍了送达语义,即至多一次(At-Most Once)、至少一次(At-Least Once)和恰好一次(Exactly Once),并指出Exactly Once需要重试和幂等来保证。在我们的时序系统中实现了kafka ingest,需要接受用户写入kafka的数据,并高效的写入引擎,这里开始我们使用autoCommit,这就是经典的至多一次,但是存在数据丢失风险,后来我们使用手动管理offset,保证在实际写入成功后再提交offset,但这依旧只能保证至少一次,真正的恰好一次是靠时序数据库本身的幂等保证的。

技术使人们能够控制除了技术以外的一切

第六章是对前五章的总结。

计算机能集中注意力的时间只和它的电源线一样长

第七章讨论了窗口计算和窗口水位;前者讨论了固定窗口,滑动窗口和会话窗口,并指出可以使用外部系统来完善窗口算子;其次提到乱序数据的到达需要设置窗口水位,一般情况下维持多个窗口开销较大,以目前的经验用户通常可以接受丢弃这部分数据。Tison提到The Dataflow Model 是 Google 流计算的经典论文,Dataflow 模型的开山之作,简单浏览了一下文章内容,窗口水位部分对应文章中:

  1. When in processing time they are materialized ?
  2. How earlier results relate to later refinements ?

这里我还想讨论下目前公有云监控的实时性问题,腾讯云上目前分钟监控在120s内,秒监控在12s以内,这个值是怎么得到的呢?时序数据本质上也可以看作一个有界的数据流,分钟级别监控可以认为是窗口为时间的数据,在这种情况下首先存在一个攒数据的过程,因为不确定数据实在一分钟的哪一秒到达,这就60s了,在加上上报存在失败,在最后1s失败时允许重试,最后就是时序数据库内写入的削峰,这些加起来产品给出了120s的保证。

一个SQL查询来到酒吧,走到两张桌子(table)前问道:我能加入(join)你们吗

第八章讨论JOIN。书中把join当作一种特殊的扇入方式,并提出流必须转化为表才可以执行join,同时讨论了双流join中首先基于窗口物化流,其次再join。这一节的内容在我们的流系统中无法使用,但是在流式查询引擎中还是有理论指导意义的,首先基于窗口截取,其次再合并返回。

永远不要相信一台你无法扔出窗口的计算机

第九章讨论了流系统中广泛支持的故障处理机制,即反压,一种与数据流向相反的压力。因为流是源源不断的,如果存在某个模块出现预期之外的情况,问题很快会传播到其他组件,导致系统崩溃,反压就是最后一道防线,
具体介绍了如何判断繁忙状态与如何执行反压,前者我认为与系统相关,后者的处理是通用的,1. 停止数据源 2. 停止上游组件 并需要考虑如何解除反压状态让系统恢复。

且反压需要区分事件,比如实例宕机或者消费能力不足,这两者靠自身都是无法恢复的,需要拉起实例和增加资源,书中还提到一种特殊的case,即持续触发反压,这会造成整个系统的抖动。

这一章对我来说最大的意义在于从理论上确定了在流系统上思考极端情况是有理论基础的,在我们的实现流计算过程中就遇到过类似的问题,比如WAL拉取导致计算节点CPU暴增处理包变慢,存储节点累计大包,出现大范围OOM;其次还有在均衡操作触发时存在消费老数据的情况,造成CPU激增,影响其他组件;这些其实都是没有考虑反压的情况。

对于如何判断繁忙状态与如何执行反压,前者可以通过统计CPU/内存来做,后者可以选择停止输入和丢弃,工程上不同的场景在监控上需要可以体现。

重启试试

第十章讨论了有状态计算,这同时是Flink的最大价值,即而在于实现了带状态的流计算。这一章主要阐述状态和检查点,即何时持久化状态,书中给出的方法是在数据流中加入检查点,这可以理解为屏障(barrier)。其实以目前我们在时序数据库中实现的流系统来看,最难的点其实在于调度,因为调度的复杂性,我们没有选择有状态的流计算,在出现故障时,选择重放几个窗口的事件,并限制CPU/内存使用。

成功不在于是否曾经摔倒,而在于能否重新站起来

第十一章终章是对七到十章节的总结和展望。

总结

现有的时序数据库只是实现了窗口仅为时间,无状态的,且非DAG的简化批处理系统,想以此替代流系统的全部份额基本不太现实,但是确实可以拿下其中部分收益,领域垂直公司需要故事去活下去,但是公有云需要关注业务上真正需要解决的问题,可见的未来我们的精力不会投入到完善时序的流计算系统中去。

参考:

  1. 大图书馆 #8 流式系统阅读指南
  2. 大图书馆 #9 《流计算系统图解》书评
  3. 支持消息队列和流式计算背后,TDengine 3.0 存储引擎的优化与升级
  4. DolphinDB教程:流数据时序引擎
  5. 一文学会如何使用 TDengine 3.0 中的流式计算
  6. 支持消息队列和流式计算背后,TDengine 3.0 存储引擎的优化与升级
  7. Naiad:A Timely Dataflow System
  8. 论文阅读-Naiad:A Timely Dataflow System
  9. The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-Order Data Processing
  10. 大数据理论篇 - 通俗易懂,揭秘谷歌《The Dataflow Model》的核心思想(一)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1442455.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python-游戏篇-初级-超级画板

文章目录 开发环境要求运行方法PyCharmVScode 代码main.pytools.py 效果 开发环境要求 本系统的软件开发及运行环境具体如下。 操作系统:Windows 7、Windows 10。Python版本:Python 3.7.1。开发工具:PyCharm 2018。Python内置模块&#xff…

政安晨:示例演绎TensorFlow的官方指南(三){快速使用数据可视化工具TensorBoard}

这篇文章里咱们演绎TensorFLow的数据可视化工具:TensorBoard。 在机器学习中,要改进模型的某些参数,您通常需要对其进行衡量。TensorBoard 是用于提供机器学习工作流期间所需测量和呈现的工具。它使您能够跟踪实验指标(例如损失和…

STM32 定时器

目录 TIM 定时器定时中断 定时器外部时钟 PWM驱动LED呼吸灯(OC) PWM控制舵机 PWMA驱动直流电机 输入捕获模式测频率(IC) 输入捕获模式测占空比 编码器接口测速(编码器接口) TIM 通用定时器 高级定时器 定时器定时中断 Ti…

材料非线性Matlab有限元编程:初应力法与初应变法

导读:本文主要围绕材料非线性问题的有限元Matlab编程求解进行介绍,重点围绕牛顿-拉普森法(切线刚度法)、初应力法、初应变法等三种非线性迭代方法的算法原理展开讲解,最后利用Matlab对材料非线性问题有限元迭代求解算法进行实现,展示了实现求解的核心代码。这些内容都将收…

Spring基础 - Spring核心之控制反转(IOC)

Spring基础 - Spring核心之控制反转(IOC) 引入 Spring框架管理这些Bean的创建工作,用户管理Bean转变为框架管理Bean,这个称之为控制翻转Spring框架托管创建的Bean放在IOC容器中Spring框架为了更好让用户配置Bean,必然会引入不同方式来配置B…

5G NR 频率计算

5G中引入了频率栅格的概念,也就是小区中心频点和SSB的频域位置不能随意配置,必须满足一定规律,主要目的是为了UE能快速的搜索小区;其中三个最重要的概念是Channel raster 、synchronization raster和pointA。 1、Channel raster …

OpenEuler20.03LTS SP2 上安装 OpenGauss3.0.0 单机部署过程(二)

开始安装 OpenGauss 数据库 3.1.7 安装依赖包 (说明:如果可以联网,可以通过网络 yum 安装所需依赖包,既可以跳过本步骤。如果网络无法连通,请把本文档所在目录下的依赖包上传到服务器上,手工安装后,即无需通过网络进行 Yum 安装了): 上传:libaio-0.3.111-5.oe1.x8…

微信小程序checkbox多选

效果图 <view class"block"><view class"header"><view class"header-left"><text class"pu-title">数据</text><text class"pu-tip">至少选择一个指标</text></view>&l…

Gateway API 实践之(八)FSM Gateway SSL 代理终端与 TLS 上游

FSM Gateway 流量管理策略系列&#xff1a; 故障注入黑白名单访问控制限速重试会话保持健康检查负载均衡算法TLS 上游双向 TLS 网关使用 HTTP 对外与客户端通信&#xff0c;而与上游服务使用 HTTPS 的功能&#xff0c;是一种常见的网络架构模式。在这种模式下&#xff0c;网关…

NOR Flash 存内计算芯片技术探幽

文章目录 NOR Flash 存内计算芯片技术探幽1. 核心技术与芯片架构的独特设计2. 强大性能与多样化应用场景3. 技术前景与面临挑战4. 模拟计算精度的突破5. 工具链完善与应用生态建设6. 跨层协同设计的推动7. 技术突破与挑战8. 工具链的完善与生态系统建设9. 跨层协同设计的加强10…

Red Panda Dev C++ Maker 使用说明

https://download.csdn.net/download/HappyStarLap/88804678https://download.csdn.net/download/HappyStarLap/88804678 下载https://download.csdn.net/download/HappyStarLap/88804678&#xff1a; ​ 这个&#xff0c;就是我们将运行的文件。 ​ 里面加了许多我…

Go内存优化与垃圾收集

Go提供了自动化的内存管理机制&#xff0c;但在某些情况下需要更精细的微调从而避免发生OOM错误。本文介绍了如何通过微调GOGC和GOMEMLIMIT在性能和内存效率之间取得平衡&#xff0c;并尽量避免OOM的产生。原文: Memory Optimization and Garbage Collector Management in Go 本…

Java编程构建高效二手交易平台

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…

H12-821_73

73.某台路由器Router LSA如图所示&#xff0c;下列说法中错误的是&#xff1f; A.本路由器的Router ID为10.0.12.1 B.本路由器为DR C.本路由器已建立邻接关系 D.本路由器支持外部路由引入 答案&#xff1a;B 注释&#xff1a; LSA中的链路信息Link ID&#xff0c;Data&#xf…

学习笔记——ENM模拟

学习笔记——ENM模拟 文章目录 前言一、文献一1. 材料与方法1.1. 大致概念1.2. 生态模型的构建1.2.1. 数据来源&#xff1a;1.2.2. 数据处理&#xff1a;1.2.3. 模型参数优化&#xff1a; 1.3. 适生情况预测1.3.1. 预测模型构建1.3.2. 适生区划分 1.4. 模型的评估与验证 2. 结果…

MyBatisPlus之分页查询及Service接口运用

一、分页查询 1.1 基本分页查询 配置分页查询拦截器 package com.fox.mp.config;import com.baomidou.mybatisplus.extension.plugins.MybatisPlusInterceptor; import com.baomidou.mybatisplus.extension.plugins.inner.PaginationInnerInterceptor; import org.springfra…

查看系统进程信息的Tasklist命令

Tasklist命令是一个用来显示运行在本地计算机上所有进程的命令行工具&#xff0c;带有多个执行参数。另外&#xff0c;Tasklist可以代替Tlist工具。通过任务管理器&#xff0c;可以查看到本机完整的进程列表&#xff0c;而且可以通过手工定制进程列表方式获得更多进程信息&…

【Web】基于Mybatis的SQL注入漏洞利用点学习笔记

目录 MyBatis传参占位符区别 不能直接用#{}的情况 in多参数值查询 like %%模糊查询 order by列名参数化 MyBatis传参占位符区别 在 MyBatis 中&#xff0c;#{} 和 ${} 都是用于传参的占位符&#xff0c;但它们之间有很大的区别&#xff0c;主要体现在两个方面&#xff1a…

C++初阶篇----新手进村

目录 一、什么是C二、C关键字三、命名空间3.1命名空间的定义3.2命名空间的使用 四、C输入和输出五、缺省参数5.1缺省参数的概念5.2缺省参数的分类 六、函数重载6.1函数重载的概念6.2函数重载的原理----名字修饰 七、引用7.1引用概念7.2引用特性7.3常引用7.4引用的使用7.5传值、…

【并发编程】享元模式

&#x1f4dd;个人主页&#xff1a;五敷有你 &#x1f525;系列专栏&#xff1a;并发编程 ⛺️稳重求进&#xff0c;晒太阳 享元模式 简介 定义 英文名称&#xff1a;Flyweight pattern. 当需要重用数量有限的同一类对象时 享元模式是一种结构型的设计模式。它的主要目…