【保姆级教程|YOLOv8改进】【7】多尺度空洞注意力(MSDA),DilateFormer实现暴力涨点

news2025/1/12 8:37:54

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~

《------正文------》

前言

论文发表时间:2023.02.03

paper地址:https://arxiv.org/pdf/2302.01791.pdf
github地址:https://github.com/JIAOJIAYUASD/dilateformer

在这里插入图片描述

文章提出了一种新的注意力机制——多尺度空洞注意力(MSDA)。MSDA 能够模拟小范围内的局部和稀疏的图像块交互,从而减少全局注意力模块中存在大量的冗余。因为作者发现在浅层次上,注意力矩阵具有局部性和稀疏性两个关键属性,这表明在浅层次的语义建模中,远离查询块的块大部分无关,全局注意力模块中存在大量的冗余。本文详细介绍了如何在yolov8中引入MSDA,有效地减少自注意力机制的冗余,无需复杂的操作和额外的计算成本,并且使用修改后的yolov8进行目标检测训练与推理本文提供了所有源码免费供小伙伴们学习参考,需要的可以通过文末方式自行下载。

本文改进使用的ultralytics版本为:ultralytics == 8.0.227

目录

  • 前言
  • 1.DilateFormer简介
    • 1.1 网络结构
    • 1.2 性能对比
  • 2.YOLOv8添加MSDA
    • YOLOv8网络结构前后对比
    • 定义相关类
    • 修改指定文件
  • 3.加载配置文件并训练
  • 4.模型推理
  • 【源码免费获取】
  • 结束语

1.DilateFormer简介

在这里插入图片描述

摘要:本文提出了一种新颖的多尺度空洞 Transformer,简称DilateFormer,以用于视觉识别任务。原有的 ViT 模型在计算复杂性和感受野大小之间的权衡上存在矛盾。众所周知,ViT 模型使用全局注意力机制,能够在任意图像块之间建立长远距离上下文依赖关系,但是全局感受野带来的是平方级别的计算代价。同时,有些研究表明,在浅层特征上,直接进行全局依赖性建模可能存在冗余,因此是没必要的。为了克服这些问题,作者提出了一种新的注意力机制——多尺度空洞注意力(MSDA)。MSDA 能够模拟小范围内的局部和稀疏的图像块交互,这些发现源自于对 ViTs 在浅层次上全局注意力中图像块交互的分析。作者发现在浅层次上,注意力矩阵具有局部性和稀疏性两个关键属性,这表明在浅层次的语义建模中,远离查询块的块大部分无关,因此全局注意力模块中存在大量的冗余。

1.1 网络结构

在这里插入图片描述
在这里插入图片描述

1.2 性能对比

在这里插入图片描述
在这里插入图片描述

2.YOLOv8添加MSDA

YOLOv8网络结构前后对比

在这里插入图片描述

定义相关类

ultralytics/nn/attention/中新建dilateformer.py,代码如下:
在这里插入图片描述

修改指定文件

ultralytics/nn/tasks.py 上方导入相应类名,并在parse_model解析函数中添加如下代码:
在这里插入图片描述
在这里插入图片描述

ultralytics/cfg/models/v8文件夹下新建yolov8-C2f-MSDA.yaml文件,内容如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs


# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f_MSDA, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f_MSDA, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f_MSDA, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f_MSDA, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3.加载配置文件并训练

加载yolov8-C2f-MSDA.yaml配置文件,并运行train.py训练代码:

#coding:utf-8
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/v8/yolov8-C2f-MSDA.yaml')
    model.load('yolov8n.pt') # loading pretrain weights
    model.train(data='datasets/TomatoData/data.yaml', epochs=50, batch=4)

注意观察,打印出的网络结构是否正常修改,如下图所示:
在这里插入图片描述

4.模型推理

模型训练完成后,我们使用训练好的模型对图片进行检测:

#coding:utf-8
from ultralytics import YOLO
import cv2

# 所需加载的模型目录
# path = 'models/best2.pt'
path = 'runs/detect/train3/weights/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/Riped tomato_8.jpeg"

# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')

# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=2,fy=2,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

在这里插入图片描述

【源码免费获取】

为了小伙伴们能够,更好的学习实践,本文已将所有代码、示例数据集、论文等相关内容打包上传,供小伙伴们学习。获取方式如下:

关注下方名片G-Z-H:【阿旭算法与机器学习】,发送【yolov8改进】即可免费获取

在这里插入图片描述

结束语

关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1440375.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Ribbon全方位解析:构建弹性的Java微服务

第1章 引言 大家好,我是小黑,咱们今天聊聊Ribbon,这货是个客户端负载均衡工具,用在Spring Cloud里面能让咱们的服务调用更加灵活和健壮。负载均衡,听起来挺高大上的,其实就是把外界的请求平摊到多个服务器上,避免某个服务器压力太大,其他的却在那儿闲着。 Ribbon的牛…

Springboot整合JUnit5框架

目录 第一章、在pom文件中导入依赖第二章、新建测试类第三章、新建测试方法 友情提醒: 先看文章目录,大致了解文章知识点结构,点击文章目录可直接跳转到文章指定位置。 第一章、在pom文件中导入依赖 SpringBoot2.2x之后的版本中spring-boot-starter-te…

Python(21)正则表达式中的“元字符”

大家好!我是码银🥰 欢迎关注🥰: CSDN:码银 公众号:码银学编程 获取资源:公众号回复“python资料” 在本篇文章中介绍的是正则表达式中一部分具有特殊意义的专用字符,也叫做“元…

基于51 单片机的交通灯系统 源码+仿真+ppt

主要内容: 1)南北方向的绿灯、东西方向的红灯同时亮40秒。 2)南北方向的绿灯灭、黄灯亮5秒,同时东西方向的红灯继续亮。 3)南北方向的黄灯灭、左转绿灯亮,持续20秒,同时东西方向的红灯继续…

rust语言tokio库底层原理解析

目录 1 rust版本及tokio版本说明1 tokio简介2 tokio::main2.1 tokio::main使用多线程模式2.2 tokio::main使用单线程模式 3 builder.build()函数3.1 build_threaded_runtime()函数新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图…

前端JavaScript篇之对执行上下文的理解

目录 对执行上下文的理解创建执行上下文 对执行上下文的理解 当我们在执行JavaScript代码时,JavaScript引擎会创建并维护一个执行上下文栈来管理执行上下文。执行上下文有三种类型:全局执行上下文、函数执行上下文和eval函数执行上下文。 在写代码的时…

第十三、十四个知识点:用javascript获取表单的内容并加密

我们先来写一段代码&#xff1a; <body><form action"#" method"post">//写一个表单<span>用户名&#xff1a;</span><input type"text" id"username" name"username"><span>密码&a…

BGP 双归不同运营商并且客户之间互为主备的部署实验

一、拓朴&#xff1a; 要求&#xff1a; 1、双方 ISP 均不得将客户 AS 做为穿越 AS 2、对于客户业务的出流量&#xff1a;客户 AS100 和 200 访问 ISP 时&#xff0c;AS100优选从 Line-1 线路&#xff0c;AS200 优选从 Line-2 访问&#xff0c;但当 Line-1 和 …

Springboot+vue的社区智慧养老监护管理平台设计与实现(有报告),Javaee项目,springboot vue前后端分离项目

演示视频&#xff1a; Springbootvue的社区智慧养老监护管理平台设计与实现&#xff08;有报告&#xff09;&#xff0c;Javaee项目&#xff0c;springboot vue前后端分离项目 项目介绍&#xff1a; 本文设计了一个基于Springbootvue的前后端分离的社区智慧养老监护管理平台设…

springboot项目启动报错:dynamic-datasource can not find primary datasource

项目启动报错信息 Caused by: com.baomidou.dynamic.datasource.exception.CannotFindDataSourceException: dynamic-datasource can not find primary datasourceat com.baomidou.dynamic.datasource.DynamicRoutingDataSource.determinePrimaryDataSource(DynamicRoutingDat…

Prime(VulnHub)

Prime 文章目录 Prime1、nmap2、web渗透随便看看首页隐写查看目录爆破gobusterferoxbusterdirsearchdirb whatwebsearchsploit WordPress 5.2.2/dev/secret.txtFuzz_For_Webwfuzzimage.phpindex.php location.txtsecrettier360文件包含漏洞包含出password.txt尝试ssh登入尝试登…

AD9361多片同步设计方法

本文基于ZC706FMCOMMS5的平台&#xff0c;介绍了多片AD9361同步的方法。并将该设计移植到自行设计的ZYNQ70354片AD9361(实现8路同步收发)的电路板上。本设计采用纯逻辑的方式&#xff0c;仅使用了ZYNQ芯片的PL部分。 9361多芯片同步主要包括基带同步和射频同步两大块任务。其中…

idea自带的HttpClient使用

1. 全局变量配置 {"local":{"baseUrl": "http://localhost:9001/"},"test": {"baseUrl": "http://localhost:9002/"} }2. 登录并将结果设置到全局变量 PostMapping("/login")public JSONObject login(H…

Mac电脑到手后的配置

一、Homebrew 1、Homebrew安装 /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)" 桌面的Old_Homebrew文件夹&#xff0c;没有你需要的可以删除。 2、Homebrew卸载 /bin/zsh -c "$(curl -fsSL https://gitee.com/c…

2023年ABC123公众号年刊下载(PDF电子书)

Part1 前言 大家好&#xff0c;我是ABC_123。2023年公众号正式更名为"希潭实验室"。除了分享日常红队攻防、渗透测试技术文章之外&#xff0c;重点加强了APT案例分析方面的内容。公众号关注度得到进一步提升&#xff0c;关注人数已达到3万5千人。原计划在2023年编写…

【FPGA开发】Modelsim和Vivado的使用

本篇文章包含的内容 一、FPGA工程文件结构二、Modelsim的使用三、Vivado的使用3.1 建立工程3.2 分析 RTL ANALYSIS3.2.1 .xdc约束&#xff08;Constraints&#xff09;文件的产生 3.3 综合 SYNTHESIS3.4 执行 IMPLEMENTATION3.5 烧录程序3.6 程序固化3.6.1 SPI约束3.6.2 .bin文…

【GAMES101】Lecture 19 透镜

目录 理想的薄透镜 模糊 利用透镜模型做光线追踪 景深&#xff08;Depth of Field&#xff09; 理想的薄透镜 在实际的相机中都是用的一组透镜来作为这个镜头 这个因为真实的棱镜无法将光线真正聚焦到一个点上&#xff0c;它只能聚在一堆上 所以方便研究提出了一种理想化的…

vue的8大生命周期

第072个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下&#xff0c;本专栏提供行之有效的源代码示例和信息点介绍&#xff0c;做到灵活运用。 提供vue2的一些基本操作&#xff1a;安装、引用&#xff0c;模板使用&#xff0c;computed&a…

移动端基础-响应式开发:Bootstrap前端开发框架

Bootstrap使用 目前只考虑样式库CSS布局效果 步骤&#xff1a; 1.创建文件 2.创建HTML骨架结构 3.引入相应样式文件 4.书写内容 创建文件 到官网下载好bootstrap.js 创建文件夹&#xff1a; 将样式引入 直接查找css样式&#xff1a; 注意&#xff1a;不同的样式是通过类…

倒计时61天

M-智乃的36倍数(normal version)_2024牛客寒假算法基础集训营3 (nowcoder.com) //非ac代码,超时了,54.17/100#include<bits/stdc.h> using namespace std; const int N1e55; const int inf0x3f3f3f3f; #define int long long int n; string s1[N]; void solve() {cin>…