基于深度学习的SSVEP分类算法简介

news2024/11/28 11:50:57

基于深度学习的SSVEP分类算法简介

  • 1、目标与范畴
  • 2、深度学习的算法介绍
  • 3、参考文献

1、目标与范畴

稳态视觉诱发电位(SSVEP)是指当受试者持续注视固定频率的闪光或翻转刺激时,在大脑枕-额叶区域诱发的与刺激频率相关的电生理信号。与P300、运动想像(MI)和其他脑电图信号相比,SSVEP具有更高的信噪比,可以产生更高的ITR,使其成为长期以来最有前途的脑电图范式之一。然而,传统的信号处理算法在解码SSVEP信号时依赖于手动特征提取,在各种极端情况下(数据长度短、刺激数目多、校准数据量小)性能较差,无法满足行业的实际需求。深度学习技术作为人工智能的主要研究分支之一,已被应用于计算机视觉、自然语言处理、推荐系统等各个领域的研究。由于其强大的特征表达能力和极高的灵活性,它颠覆了这些领域的算法设计思想,并取得了显著的成果。

近年来,随着深度学习技术在脑机接口领域的各个方面都具有不错的应用前景,并取得了十分可观的实验效果,从而逐渐受到脑机接口领域研究人员的青睐。SSVEP-BCI系统的研究者们也把握了这个时代机遇,开始尝试探索使用深度学习技术研发SSVEP频率识别算法。因此,本文致力于追踪与介绍前沿研究者们提出的基于深度学习的SSVEP信号识别方法,并提供复现他们模型的Python实现代码。复现的方法包括EEGNet1-2、C-CNN3、FBtCNN4、ConvCA5、SSVEPNet6和SSVEPformer7。代码里使用了Nankanish Masaki在Github上提供的12分类公共数据集8评估模型性能。

2、深度学习的算法介绍

  • EEGNet: EEGNet是一种专门为处理脑电信号数据而设计的卷积神经网络模型,它接收时域脑电数据作为网络输入。EEGNet由4层组成。第一层是卷积层,用于模拟对每个通道数据进行的带通滤波操作。第二层是空间滤波层,通过深度卷积对每个通道的数据进行加权。第三层是用于提取类别信息的独立卷积层。第四层是用于分类的完全连接层。自提出以来,EEGNet已被用于各种脑电任务,如运动图像、P300、SSVEP等 1-2
    在这里插入图片描述

  • CCNN: CCNN也是一个卷积神经网络模型。不同的是,C-CNN使用富含振幅和相位信息的频域数据作为网络输入。值得注意的是,为了获得网络的输入,CCNN使用了基于填充的FFT算法,该算法可以获得任何数据长度的220个数据点,包括110个实部数据和110个虚部数据。CCNN网络结构由两个卷积层和一个完全连接层组成。第一卷积层是空间滤波层,第二卷积层是时间滤波层,全连接层用于分类。CCNN的出现表明光谱数据有利于SSVEP的分类3
    在这里插入图片描述

  • FBtCNN: 对于SSVEP频率识别过程中,在频域输入的范式下,短期窗口下的特征可能不明显,每个通道的时间差异可能被忽略。考虑到谐波信息中嵌入了大量关于频率识别的有效信息,研究人员提出了一种基于滤波器组技术的CNN架构,称为FBtCNN。FBtCNN使用时域信号作为网络输入,并使用滤波器组融合来自不同频带的特征信息,以提高网络的分类性能4
    在这里插入图片描述

  • ConvCA: 从不同电极通道收集的SSVEP信号彼此具有非线性关系,因此来自多个通道的EEG信号的线性组合可能不是对SSVEP进行分类的最准确的解决方案。为了进一步提高SSVEP-BCI的性能,研究人员提出了一种基于CNN的非线性相关分析网络,称为ConvCA。ConvCA有两个分支,一个是将多通道脑电图信号降级为单通道脑电图信号的信号网络,另一个是把多通道参考信号解释为单通道参考信号的参考网络。ConvCA通过分析信号网络输出和参考网络输出之间的相关性来完成SSVEP的分类过程5
    在这里插入图片描述

  • SSVEPNet: SSVEPNet是卷积神经网络和长短期记忆网络的混合网络模型,接受时域数据作为网络输入。SSVEPNet由三部分组成:卷积神经网络、长短期记忆网络和全连接网络。其中,CNN用于提取脑电的时空特征,双向LSTM用于基于时空特征之间的依赖性进行编码,由三个全连接层组成的全连接网络用于最终分类。此外,为了抑制网络训练过程中可能出现的过拟合,在网络实现过程中结合了频谱归一化标签平滑技术,进一步提高了模型的泛化能力。即使只有少量的校准数据,SSVEPNet仍然可以实现非常好的分类性能,并且这一特性已经在4类、12类和40类数据集上得到了验证6
    在这里插入图片描述

  • SSVEPformer: 基于注意力机制的Transformer已被应用至计算机视觉、自然语言处理等多个领域,并取得了举世瞩目的成果。近年来,Transformer也逐渐被引入至脑电信号的解码分析中来,揭示了Transformer应用至SSVEP-BCI系统的潜在可能性。正愁于当前SSVEP解码算法依赖于大量的被试校准数据,研究者们提出了基于Transformer的SSVEP分类网络SSVEPformer以实现零校准高性能网络。SSVEPformer与C-CNN的网络输入一致,使用频域信号作为输入,并结合CNN与MLP网络完成Transformer的特征编码与注意力学习过程。SSVEPformer可以在跨被试实验中取得十分可观的分类性能,显著优于其它分类网络。此外,结合滤波器组技术,研究者们提出了改进版网络FB-SSVEPformer,以进一步地提升网络性能。

在这里插入图片描述
所有深度学习模型的实现代码: https://github.com/YuDongPan/DL_Classifier

3、参考文献


  1. Lawhern V J, Solon A J, Waytowich N R, et al. EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces[J]. Journal of neural engineering, 2018, 15(5): 056013. https://iopscience.iop.org/article/10.1088/1741-2552/aace8c/meta ↩︎ ↩︎

  2. Waytowich N, Lawhern V J, Garcia J O, et al. Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials[J]. Journal of neural engineering, 2018, 15(6): 066031. https://iopscience.iop.org/article/10.1088/1741-2552/aae5d8/meta ↩︎ ↩︎

  3. Ravi A, Beni N H, Manuel J, et al. Comparing user-dependent and user-independent training of CNN for SSVEP BCI[J]. Journal of neural engineering, 2020, 17(2): 026028. https://iopscience.iop.org/article/10.1088/1741-2552/ab6a67/meta ↩︎ ↩︎

  4. Ding W, Shan J, Fang B, et al. Filter bank convolutional neural network for short time-window steady-state visual evoked potential classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 2615-2624. https://ieeexplore.ieee.org/abstract/document/9632600/ ↩︎ ↩︎

  5. Li Y, Xiang J, Kesavadas T. Convolutional correlation analysis for enhancing the performance of SSVEP-based brain-computer interface[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(12): 2681-2690. https://ieeexplore.ieee.org/abstract/document/9261605/ ↩︎ ↩︎

  6. Pan Y, Chen J, Zhang Y, et al. An efficient CNN-LSTM network with spectral normalization and label smoothing technologies for SSVEP frequency recognition[J]. Journal of Neural Engineering, 2022, 19(5): 056014. https://iopscience.iop.org/article/10.1088/1741-2552/ac8dc5/meta ↩︎ ↩︎

  7. Chen J, Zhang Y, Pan Y, et al. A Transformer-based deep neural network model for SSVEP classification[J]. Neural Networks, 2023, 164: 521-534. https://www.sciencedirect.com/science/article/abs/pii/S0893608023002319 ↩︎

  8. Nakanishi M, Wang Y, Wang Y T, et al. A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials[J]. PloS one, 2015, 10(10): e0140703. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0140703 ↩︎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1432696.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Flume多进程传输

1.Flume介绍 Flume 是一种分布式、可靠且可用的服务,用于高效收集、聚合和移动大量日志数据。它具有基于流数据流的简单而灵活的架构。它具有鲁棒性和容错性,具有可调的可靠性机制和许多故障转移和恢复机制。它使用简单的可扩展数据模型,允许…

【自然语言处理】P4 神经网络基础 - 激活函数

目录 激活函数SigmoidTanhReLUSoftmax 本节博文介绍四大激活函数,Sigmoid、Tanh、ReLU、Softmax。 激活函数 为什么深度学习需要激活函数? 博主认为,最重要的是 引入非线性。 神经网络是将众多神经元相互连接形成的网络。如果神经元没有激…

Text Mesh Pro图文混排如何对任何图片都能实现

1)Text Mesh Pro图文混排如何对任何图片都能实现 2)Unity iOS平台的小图占用特别大的内存 3)只在编辑器内,纹理不开启Read&Write情况下,如何获取纹理所有颜色值 4)准备在海外发行游戏,有哪些…

微服务入门篇:Nacos注册中心(Nacos安装,快速入门,多级存储,负载均衡,环境隔离,配置管理,热更新,集群搭建,nginx反向代理)

目录 1.Nacos安装1.官网下载2.解压到本地3.启动nacos 2.Nacos快速入门1.在父工程中导入nacos依赖2.给子项目添加客户端依赖3.修改对应服务的配置文件4.启动服务,查看nacos发现情况 3.Nacos服务多级存储模型4.NacosRule负载均衡5. 服务实例的权重设置6.环境隔离&…

【SAR成像】基于RD、CS和ωk算法的合成孔径雷达成像算法原理与实现

基于RD、CS和ωk算法的合成孔径雷达成像算法实现 前言SAR基本概念雷达获取数据的几何关系低斜视角下的回波信号模型 RADARSAT-1主要参数数据预处理数据读取与再封装数据补零 成像算法坐标轴的产生RD算法距离压缩距离徙动矫正方位压缩 CS算法第一次相位相乘 变标后的信号第二次相…

Unity类银河恶魔城学习记录1-11 PlayerPrimaryAttack P38

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释,可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili Player.cs using System.Collections; using System.Collections.Generic…

get通过发送Body传参-工具类

1、调用方式 String url "http://ip/xxx/zh/xxxxx/xxxx/userCode"; //进行url中的对应的参数 url2 url2.replace("ip",bancirili); url2 url2.replace("zh",zh); url2 url2.replace("userCode",userCode);String dateTime xxxx; //组…

共享网盘系统PHP源码

新V5.0版本,支持上传视频、支持视频播放、支持共享,也可以自己用。 可以自动生成视频外链,下载地址,播放器代码,html代码,ubb代码等等。 使用方法: 源码上传到服务器,打开网站根据…

vscode debug无法直接查看eigen变量的问题(解决方法)

主要是给gdb添加一个Eigen相关的printer即可, 网上其他教程都搞太复杂了, 我整理成了一个仓库, 把仓库克隆下来直接运行 ./setup.sh脚本即可配置好 git clone gitgithub.com:fandesfyf/EigenGdb.git cd EigenGdb ./setup.sh 然后在vscode中重新debug即可。 效果 …

使用yolov5时需要安装的requirements.txt

之前需要配置好pytorch,同时注意的是pytoorch版本需要在1.7以上 1.github下载好requirements.txt 文件内容如下: 2.在cmd命令行转移到yolov5所在文件夹及配置的yolo环境中,直接下载 pip install -r requirements.txt -i http://pypi.doub…

一文讲透ast.literal_eval() eval() json.loads()

文章目录 一文讲透ast.literal_eval() eval() json.loads()1. ast.literal_eval()2. eval()3. json.loads()4. 总结 一文讲透ast.literal_eval() eval() json.loads() 在Python库中,我们经常会遇到需要将字符串转换为相应对象或数据结构的情况。在这种情况下&#…

TCP与UDP:传输层协议的差异与选择

在计算机网络中,传输控制协议(TCP)和用户数据报协议(UDP)是两种常用的传输层协议。然而,随着互联网的快速发展,传统的TCP和UDP在某些场景下存在一些限制。为了解决这些问题,出现了新…

蓝桥杯Web应用开发-display属性

display 属性 专栏持续更新中 display 属性可以用来设置元素在页面上的排列方式,也可用来隐藏元素。 display 属性值的说明如下表所示。 属性值说明block元素以块级方式展示。inline元素以内联方式展示。inline-block元素以内联块的方式展示。none隐藏元素。 b…

Vue3.0(二):Vue组件化基础 - 脚手架

Vue组件化基础 - 脚手架 Vue的组件化 我们在处理一些任务量比较庞大的工作时候,会将工作内容进行拆分,分步骤完成 而组件化的思想正式如此,对于一个庞大的项目,我们可以将其拆分成一个个的小功能,分步骤进行实现 组…

Axure RP9原型设计工具使用记录:基础操作

Axure RP9使用记录一 📚第一章 前言📗背景📗目的 📚第二章 基础介绍及操作📗页面功能总览📗基础操作📕设置样式📕设置交互📕设置组合📕设置动态面板&#x1f…

在线JSON转SQL工具

在线JSON转SQL - BTool在线工具软件,为开发者提供方便。在线JSON转SQL工具可以将JSON文件中的数据或者JSON对象转换为SQL插入语句,方便用户将数据导入到数据库中。用户可以通过简单的界面上传JSON文件,或者文本框输入,点击JSON转S…

云服务器也能挂游戏 安卓模拟器

安卓模拟器云服务器 什么是BlueStacks模拟器主机? 特网科技基于Windows操作系统预装了BlueStacks Android模拟器您能够通过Android模拟器安装Android应用程序、如APP游戏、安卓APP、APP游戏等。 我可以在主机上安装应用程序吗? 你可以在BlueStacks模…

适合大型企业的云计算服务器有哪些?

随着云计算技术的不断发展,越来越多的企业开始采用云计算服务来降低成本、提高效率。对于大型企业而言,选择适合的云计算服务器非常重要,因为它将直接影响企业的业务运营和数据安全。本文将介绍适合大型企业的云计算服务器类型,以…

使用Pycharm安装Python的库

1.点击文件-----设置(setting) 2.找到Python解释器,点击加号 3.搜索你需要的库,安装

介绍一个关于 JSON 可视化的网站

最近在看到一个比较好玩的网站,可以将 JSON以可视化的方式展现出现,比如存在一下JSON数据: {"id": "f3bbc3bc-9f34-4bf7-8a0f-7e6f6e6fbb9a","isActive": false,"age": 25,"name": "…