列式数据库、行式数据库简介

news2025/1/9 16:42:26

列式数据库、行式数据库简介

      • 1、数据准备
      • 2、行式数据库
      • 3、列式数据库
      • 4、行式、列式存储对比

常见的行式数据库有Mysql,DB2,Oracle,Sql-server等;列数据库(Column-Based)数据存储方式按列存储,常见的列数据库有Hbase,Hive,Clickhouse,Sybase 等。

1、数据准备

数据表示例:
在这里插入图片描述
SQL示例(无索引):
在这里插入图片描述

2、行式数据库

行式数据库,优先以行存储,一个块存储多行数据。读取多行时,需要更多的IO,但是读某行的多列数据时,需要更少的IO.
在这里插入图片描述
行式存储方式:示例中每一个块存储两行。
在这里插入图片描述

通过多次IO操作,找到ssn=666后,可以直接获取到first_name.
在这里插入图片描述

通过多次IO操作,找到id=1后,可以直接获取到一行的所有字段.
在这里插入图片描述

需要扫描所有的块,进行求和。
在这里插入图片描述

3、列式数据库

列式存储数据库:如果取一列值的时候,需要更少的IO;但是如果取多列值的时候需要更多的IO.
在这里插入图片描述

列式存储按列存储,如果某列过多,会分块存储。
在这里插入图片描述
列式存储可以直接找到ssn对应的列,然后根据ID,找到first_name所在列的值。
在这里插入图片描述

如果要查ID=1对应行的所有字段的数据,就要全表扫描了。
在这里插入图片描述

找到salary对应列,直接进行求和。
在这里插入图片描述

4、行式、列式存储对比

行式:读写;适合OLTP;不压缩;集合操作效率低;对于多列数据的操作效率高;
列式:写慢;适合OLAP;压缩;集合操作效率高;对于多行数据的操作效率高;
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1431456.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

026 打印三角形及debug

打印三角形 Scanner scanner new Scanner(System.in); System.out.print("请输入要打印的三角形的行数&#xff1a;"); int row scanner.nextInt(); // 这个循环控制三角形的行数 for (int i 1; i < row; i) {// 这个循环控制每行空格的个数for (int space r…

机器学习_无监督学习之聚类

文章目录 介绍机器学习下的分类K均值算法K值的选取:手肘法用聚类辅助理解营销数据贴近项目实战 介绍机器学习下的分类 以下介绍无监督学习之聚类 聚类是最常见的无监督学习算法。人有归纳和总结的能力&#xff0c;机器也有。聚类就是让机器把数据集中的样本按照特征的性质分组&…

PyTorch——初识PyTorch框架

本文主要介绍PyTorch的基础知识&#xff0c;PyTorch的优点&#xff0c;案例&#xff0c;PyTorch和Tensorflow的对比&#xff0c;让我们对PyTorch的框架有一个基本的了解。 1.1 为什么要选择学习PyTorch&#xff08;PyTorch的优点&#xff09;&#xff1f; 活跃度&#xff1a;逐…

[Tomcat问题]--使用Tomcat 10.x部署项目时,出现实例化Servlet类[xxx]异常

[Tomcat问题]–使用Tomcat 10.x部署项目时&#xff0c;出现实例化Servlet类[xxx]异常 本片博文在知乎同步更新 环境 OS: Windows 11 23H2Java Version: java 21.0.1 2023-10-17 LTSIDE: IntelliJ IDEA 2023.3.3Maven: Apache Maven 3.9.6Tomcat: Tomcat 10.1.18 ReleasedSer…

地理空间分析10——空间数据分析中的地理编码与Python

目录 写在开头 1. 地理编码基础1.1 地理编码的基本原理1.1.1 坐标系统1.1.2 地名解析1.1.3 编码算法 1.2 Python中使用地理编码的基础知识1.2.1 百度地图API1.2.2 高德地图API1.2.3 腾讯地图API 1.3 Python中实现代码 2. 逆地理编码2.1 利用Python进行逆地理编码2.1.1 获取高德…

vit细粒度图像分类(十)TransFG学习笔记

1.摘要 细粒度视觉分类(FGVC)是一项非常具有挑战性的任务&#xff0c;它旨在从子类别中识别对象&#xff0c;这是由于类间固有的微妙差异。现有的大部分工作主要是通过重用骨干网络提取检测到的判别区域的特征来解决这一问题。然而&#xff0c;这种策略不可避免地使管道变得复…

计算机软件能力认证考试CCF-202312-1 仓库规划

#自己跑的测试没问题&#xff0c;不知道为啥就是不能满分 原理比较绕&#xff0c;就是让数组中一行不断地与其他行进行比较&#xff0c;最终得到各自的索引 #include <iostream> using namespace std; int main() {int n;int m;cin>>n>>m; int array[n][m];…

【开源】基于JAVA+Vue+SpringBoot的免税店商城管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、系统设计2.1 功能模块设计2.2 研究方法 三、系统展示四、核心代码4.1 查询免税种类4.2 查询物品档案4.3 新增顾客4.4 新增消费记录4.5 审核免税 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的免税店商城管理系…

新产品!可视化试卷搭建平台

hi, 大家好, 我是徐小夕. 之前和大家分享了很多可视化低代码和零代码的技术实现和产品设计思路, 也和大家分享了 H5-Dooring 零代码搭建平台的技术实现和未来规划, 今天继续和大家分享一下我们的新产品——橙子试卷. 橙子试卷 是一款可视化试卷/问卷搭建平台, 我们可以通过拖拽…

51单片机编程应用(C语言):矩阵键盘

16个按键只要8个I/O口&#xff0c;本来16个按键要16个I/O口。 矩阵键盘可以按行扫描也可以按列扫描&#xff0c;扫描原理很简单&#xff0c;变成之前的独立按键&#xff0c;比如 按行扫描&#xff0c;看原理图如下&#xff0c;我们P170,另外三个置1&#xff0c;那么第一行就选…

69.请描述Spring MVC的工作流程?描述一下 DispatcherServlet 的工作流程?

69.请描述Spring MVC的工作流程&#xff1f;描述一下 DispatcherServlet 的工作流程&#xff1f; 核心架构的具体流程步骤如下&#xff1a; 首先用户发送请求——>DispatcherServlet&#xff0c;前端控制器收到请求后自己不进行处理&#xff0c;而是委托给其他的解析器进行…

onnx转换为rknn置信度大于1,图像出现乱框问题解决

前言 环境介绍&#xff1a; 1.编译环境 Ubuntu 18.04.5 LTS 2.RKNN版本 py3.8-rknn2-1.4.0 3.单板 迅为itop-3568开发板 一、现象 采用yolov5训练并将pt转换为onnx&#xff0c;再将onnx采用py3.8-rknn2-1.4.0推理转换为rknn出现置信度大于1&#xff0c;并且图像乱框问题…

速过计算机二级python——第五讲:函数与类库

第五讲&#xff1a;函数与类库 第五讲&#xff1a;函数与类库函数定义实参变量的作用域返回值代码复用 类创建和使用类继承导入类 模块与库概念标准库第三方库 第五讲&#xff1a;函数与类库 函数 定义 函数就是代码块&#xff0c;只不过我们给这个代码块特地进行命名&#…

Fink CDC数据同步(三)Flink集成Hive

1 目的 持久化元数据 Flink利用Hive的MetaStore作为持久化的Catalog&#xff0c;我们可通过HiveCatalog将不同会话中的 Flink元数据存储到Hive Metastore 中。 利用 Flink 来读写 Hive 的表 Flink打通了与Hive的集成&#xff0c;如同使用SparkSQL或者Impala操作Hive中的数据…

python Flask 写一个简易的 web 端程序(附demo)

python Flask 写一个简易的 web 端程序 &#xff08;附demo&#xff09; 介绍简单介绍装饰器 app.route("/") 进阶增加接口设置端口 静态网页核心代码完整代码 介绍 Flask 是一个用于构建 Web 应用程序的轻量级 Python Web 框架。它设计简单、易于学习和使用&#x…

【30秒看懂大数据】数据指标

公众号&#xff1a;知幽科技 PS:本文属专栏第24篇 简单说 数据指标是指对企业经营数据转化为可量化、可衡量、可对比、可预测的一个度量或者维度同称。 举例理解 你在小区门口开了一家馒头店。 开业第一天你算了下一共卖了50个馒头&#xff0c;一共收款100元&#xff0…

今日arXiv最热NLP大模型论文:引入噪声,可提升RAG检索效果超30%??

检索增强生成&#xff08;Retrieval-Augmented Generation&#xff0c;简称RAG&#xff09;系统的出现&#xff0c;提高了LLMs回答生成的准确性。它分为两个部分:检索与生成。检索即利用检索器从海量文档中检索出与查询最相关或者最相似的段落&#xff0c;而生成则是LLMs针对混…

幻兽帕鲁客户端存档文件 - 云上备份和恢复教程

本文将详细介绍如何将幻兽帕鲁游戏客户端的存档文件备份至云端&#xff0c;以及如何从云端恢复存档数据至本地。 一、游戏存档备份场景 幻兽帕鲁的游戏进度存储在电脑本地磁盘上&#xff0c;游戏中创建的每个世界都对应一个本地存档文件夹。在玩游戏过程中&#xff0c;客户端…

备战蓝桥杯---搜索(优化1)

显然&#xff0c;我们可以用BFS解决&#xff0c;具体实现与八数码类似&#xff1a; 下面是代码&#xff1a; #include<bits/stdc.h> using namespace std; #define N 3000000 string a,b; int hh,dis[N],cnt; struct node{string u,v; }bian[7]; map<string,int>…

Python flask 表单详解

文章目录 1 概述1.1 request 对象 2 示例2.1 目录结构2.2 student.html2.3 result.html2.4 app.py 1 概述 1.1 request 对象 作用&#xff1a;来自客户端网页的数据作为全局请求对象发送到服务器request 对象的重要属性如下&#xff1a; 属性解释form字典对象&#xff0c;包…