AI助力农作物自动采摘,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建作物番茄采摘场景下番茄成熟度检测识别分析系统

news2024/9/24 1:19:19

去年十一那会无意间刷到一个视频展示的就是德国机械收割机非常高效自动化地24小时不间断地在超广阔的土地上采摘各种作物,专家设计出来了很多用于采摘不同农作物的大型机械,看着非常震撼,但是我们国内农业的发展还是相对比较滞后的,小的时候拔草是一个人一列蹲在地里就在那埋头拔草,不知道什么时候才能走到地的尽头,小块的分散的土地太多基本上都是只能人工手工来取收割,大点的连片的土地可以用收割机来收割,不过收割机基本都是用来收割小麦的,最近几年好像老家也能看到用于收割玉米的机器了不过相对还是比较少的,玉米的收割我们基本上还是人工来收割的,不仅累效率还低遇上对玉米叶片过敏的就更要命了。。。。闲话就扯到这里了。

有时候经常在想我们的农业机械化自动化什么时候能再向前迈进一大步,回顾德国的工业机械,在视频展示的效果中,其实很关键的主要是两部分,一部分是机器视觉定位检测识别,另一部分是机械臂传动轴,两部分相互配合才能完成采摘工作,在前文中我们开发实践了番茄作物检测计数识别项目,如下:

《AI助力农作物自动采摘,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建作物生产场景下番茄采摘检测计数分析系统》

本文是在前文的基础上更进一步,本文的主要想法是想要基于最新的YOLOv8开发构建用于番茄采摘场景下的番茄作物成熟度检测识别系统,首先看下实例效果:

因为单纯地检测到番茄不能直接进行采摘,因为可能在一个大棚里面或者是一株番茄植株上面不同的果实成熟度都是不一样的,需要分门别类判断清楚才能知道哪些是可以采摘的。

简单看下实例数据情况:

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例】》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

YOLOv8官方项目地址在这里,如下所示:

目前已经收获超过1.7w的star量了。官方提供的预训练模型如下所示:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64037.380.40.993.28.7
YOLOv8s64044.9128.41.2011.228.6
YOLOv8m64050.2234.71.8325.978.9
YOLOv8l64052.9375.22.3943.7165.2
YOLOv8x64053.9479.13.5368.2257.8

另外一套预训练模型权重地址如下:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64018.4142.41.213.510.5
YOLOv8s64027.7183.11.4011.429.7
YOLOv8m64033.6408.52.2626.280.6
YOLOv8l64034.9596.92.4344.1167.4
YOLOv8x64036.3860.63.5668.7260.6

是基于Open Image V7数据集构建的,可以根据自己的需求进行选择使用即可。

YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型,可以根据自己的需要进行选择使用,这里就不再详细展开了。

简单的实例实现如下所示:

from ultralytics import YOLO
 
# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

这里给出yolov8的模型文件如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 3   # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
 
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

实验阶段,5款不同参数量级的模型保持着完全相同的参数配置,等待训练完成后我们来看下模型结果详情。为了直观对比展示,这里我们对其各个评估指标进行对比可视化

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

整体实验对比结果来看:几款不同参数量级的模型并没有呈现出来非常明显的差距,考虑到计算量的问题我们选择s系列的模型为最终推理模型。接下来以s系列的模型为基准进一步看下结果详情:

【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率-召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率-召回率曲线。
根据曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
精确率-召回率曲线提供了更全面的模型性能分析,特别适用于处理不平衡数据集和关注正例预测的场景。曲线下面积(Area Under the Curve, AUC)可以作为评估模型性能的指标,AUC值越高表示模型的性能越好。
通过观察精确率-召回率曲线,我们可以根据需求选择合适的阈值来权衡精确率和召回率之间的平衡点。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【训练可视化】

【Batch实例】

【离线推理实例】

感兴趣的话也都可以试试看!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv8s

全系列五个模型的训练结果总集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1430625.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python机器学习库(numpy库)

文章目录 Python机器学习库(numpy库)1. 数据的维度2. numpy基础知识2.1 numpy概述2.1 numpy概述2.1 numpy概述2.2 numpy库的引用 3. ndarray数组的创建3.1 N维数组对象ndarray3.2 创建ndarray数组3.2.1 使用Python列表、元组创建ndarray数组3.2.2 使用nu…

C++ 动态规划 线性DP 数字三角形

给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层,要求找出一条路径,使路径上的数字的和最大。 73 8 8 1 02 7 4 4 4 5 2 6 5 输入格式 …

Quick BI中lod函数之lod_include

一、lod函数简介 LOD函数的全称是详细级别表达式(Level Of Detail Expressisons)。它主要是为了克服一些表达式之间计算颗粒度不一致的问题。比如,要计算第一季度各月销售收入占比,这里分子计算颗粒度为’月’,但是分…

栈的应用:括号匹配问题_有效的括号

假设表达式中允许包含两种括号:圆括号和方括号,嵌套顺序要求: 左括号必须用相同类型的右括号闭合。左括号必须以正确的顺序闭合。每个右括号都有一个对应的相同类型的左括号。 考虑下列括号序列: 分析如下: 计算机…

stable diffusion学习笔记——高清修复

ai画图中通常存在以下痛点: 受限于本地设备的性能(主要是显卡显存),无法跑出分辨率较高的图片。生图的时候分辨率一调大就爆显存。即便显存足够。目前主流的模型大多基于SD1.0和SD1.5,这些模型在训练的时候通常使用小…

机器学习-基础分类算法-KNN详解

KNN-k近邻算法 k-Nearest Neighbors 思想极度简单应用数学只是少效果好可以解释机器学习算法使用过程中的很多细节问题更完整的刻画机器学习应用的流程 创建简单测试用例 import numpy as np import matplotlib.pyplot as plt raw_data_X [[3.393533211, 2.331273381],[3.1…

单片机学习笔记---定时器和中断系统如何连起来工作

前面两节我们分别讲了中断系统和定时器,这节我们看看这两者连起来工作的原理。 说明:看这一节之前一定要先把前两节给看明白了再仔细琢磨这一节的每一张图! 前两节: 单片机学习笔记---中断系统(含外部中断&#xff…

Python基础知识:Python注释及print函数、input函数

在Python中,注释是对相应代码的解释,以增加代码的可读性,让用户能够更好地理解相应代码的含义。注释通过在相应代码后面加上“#”号来实现。比如以下代码 data.describe()#对数据集进行描述性分析 其中data.describe()为需要被执行的代码&a…

网络安全之漏洞扫描

漏洞是在硬件、软件、协议的具体实现或系统安全策略上存在的缺陷,从而可以使攻击者能够在未授权的情况下访问或破坏系统。这些缺陷、错误或不合理之处可能被有意或无意地利用,从而对一个组织的资产或运行造成不利影响,如信息系统被攻击或控制…

【高阶数据结构】红黑树

文章目录 前言什么是红黑树红黑树的性质红黑树结点的定义红黑树的插入情况一情况二情况三插入代码总结 验证是否为红黑树红黑树的删除 前言 前面我们学习了 AVL 树——高度平衡的二叉搜索树,AVL 树保证了结点的左右子树的高度差的绝对值不超过 1,也就是…

Nebula Siwi:基于图数据库的智能问答助手思路分析

本文重点分析 Nebula Siwi 智能问答思路,具体代码可参考[2],使用的数据集为 Basketballplayer[3]。部分数据和 schema 如下所示: 一.智能问答可实现的功能 1.Nebula Siwi 源码整体结构 主要包括前段(Vue)和后端&#…

Unity3d C# 在WebGL平台加载并解析xml文件实现总结

前言 xml是可扩展标记语言,由一系列的元素、属性、值节点等构成的一个树形结构,除了可读性差一点,别的用于存储一些结构化的数据还是比较方便的。这个功能在Unity3d端的实现是比较方便快捷的: void GetXML1() {string filePath …

【力扣hot100】刷题笔记Day3

前言 以撒真是一不小心就玩太久了,终于解锁骨哥嘞,抓紧来刷题,今天是easy双指针! 283. 移动零 - 力扣(LeetCode) 一个指针遍历,一个指针用于交换前面的0 class Solution(object):def moveZer…

简单说说mysql的日志

今天我们通过mysql日志了解mysqld的错误日志、慢查询日志、二进制日志,redolog, undolog等。揭示它们的作用和用途,让我们工作中更能驾驭mysql。 redo 日志 如果mysql事务提交后发生了宕机现象,那怎么保证数据的持久性与完整性?…

《计算机网络简易速速上手小册》第6章:网络性能优化(2024 最新版)

文章目录 6.1 带宽管理与 QoS - 让你的网络不再拥堵6.1.1 基础知识6.1.2 重点案例:提高远程办公的视频会议质量实现步骤环境准备Python 脚本示例注意事项 6.1.3 拓展案例1:智能家居系统的网络优化实现思路Python 脚本示例 6.1.4 拓展案例2:提…

挑战杯 LSTM的预测算法 - 股票预测 天气预测 房价预测

0 简介 今天学长向大家介绍LSTM基础 基于LSTM的预测算法 - 股票预测 天气预测 房价预测 这是一个较为新颖的竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 1 基于 Ke…

Megatron-LM源码系列(七):Distributed-Optimizer分布式优化器实现Part2

1. 使用入口 DistributedOptimizer类定义在megatron/optimizer/distrib_optimizer.py文件中。创建的入口是在megatron/optimizer/__init__.py文件中的get_megatron_optimizer函数中。根据传入的args.use_distributed_optimizer参数来判断是用DistributedOptimizer还是Float16O…

QSlider使用笔记

最近做项目使用到QSlider滑动条控件,在使用过的过程中,发现一个问题就是点滑动条上的一个位置,滑块并没有移动到鼠标点击的位置,体验感很差,于是研究了下,让鼠标点击后滑块移动到鼠标点击的位置。 1、event…

this指针详细总结 | static关键字 | 静态成员

文章目录 1.this指针引入2.this指针的特性3.静态成员3.1.C语言中static的基本用法3.2.C中的static关键字 1.this指针引入 class student { public:student(const string& name){ _name name; }void print(){// _name<>this->_name<>(*this)._name// 说一下…

【Linux】打包压缩跨系统/网络传输文件常用指令完结

Hello everybody!在今天的文章中我会把剩下的3-4个常用指令讲完&#xff0c;然后开始权限的讲解。那废话不多说&#xff0c;咱们直接进入正题&#xff01; 1.zip/unzip&tar命令 1.zip/unzip 在windows系统中&#xff0c;经常见到带有zip后缀的文件。那个东西就是压缩包。…