基于Python Unet的医学影像分割系统源码,含皮肤病的数据及皮肤病分割的模型,用户输入图像,模型可以自动分割去皮肤病的区域

news2025/1/14 18:29:49

手把手教你用Unet做医学图像分割

我们用Unet来做医学图像分割。我们将会以皮肤病的数据作为示范,训练一个皮肤病分割的模型出来,用户输入图像,模型可以自动分割去皮肤病的区域和正常的区域。废话不多说,先上效果,左侧展示是原始图片,右侧是分割结果。
完整代码下载地址:基于Python Unet的医学影像分割系统源码
image-20220213204047803

考虑到同学们的论文需要,我这里还做了一些指标图,大家可以放在文章里增加篇幅

image-20220213204230631

算法原理介绍

论文地址:https://arxiv.org/pdf/1505.04597.pdf

算法解析:U-Net原理分析与代码解读 - 知乎 (zhihu.com)

Unet 发表于 2015 年,属于 FCN 的一种变体。Unet 的初衷是为了解决生物医学图像方面的问题,由于效果确实很好后来也被广泛的应用在语义分割的各个方向,比如卫星图像分割,工业瑕疵检测等。

Unet 跟 FCN 都是 Encoder-Decoder 结构,结构简单但很有效。Encoder 负责特征提取,你可以将自己熟悉的各种特征提取网络放在这个位置。由于在医学方面,样本收集较为困难,作者为了解决这个问题,应用了图像增强的方法,在数据集有限的情况下获得了不错的精度。

image-20220213205356136

如上图,Unet 网络结构是对称的,形似英文字母 U 所以被称为 Unet,在一些类别较少的数据集上,一般使用unet来做语义分割,尤其是在一些二分类的任务上,不仅仅模型比较小,而且在精度上也比较高。

更加详细的原理介绍大家可以参考原文以及大佬们在知乎和csdn上的解答,我在这里就不多做赘述了。

配置环境

不熟悉pycharm的anaconda的小伙伴请先看这篇csdn博客,了解pycharm和anaconda的基本操作

如何在pycharm中配置anaconda的虚拟环境_dejahu的博客-CSDN博客_如何在pycharm中配置anaconda

anaconda安装完成之后请切换到国内的源来提高下载速度 ,命令如下:

conda config --remove-key channels
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes
pip config set global.index-url https://mirrors.ustc.edu.cn/pypi/web/simple

首先创建python3.8的虚拟环境,请在命令行中执行下列操作:

conda create -n unet python==3.8.5
conda activate unet

pytorch安装(gpu版本和cpu版本的安装)

实际测试情况是unet在CPU和GPU的情况下均可使用,不过在CPU的条件下训练那个速度会令人发指,所以有条件的小伙伴一定要安装GPU版本的Pytorch,没有条件的小伙伴最好是租服务器来使用。

GPU版本安装的具体步骤可以参考这篇文章:2021年Windows下安装GPU版本的Tensorflow和Pytorch_dejahu的博客-CSDN博客

需要注意以下几点:

  • 安装之前一定要先更新你的显卡驱动,去官网下载对应型号的驱动安装
  • 30系显卡只能使用cuda11的版本
  • 一定要创建虚拟环境,这样的话各个深度学习框架之间不发生冲突

我这里创建的是python3.8的环境,安装的Pytorch的版本是1.8.0,命令如下:

conda install pytorch==1.8.0 torchvision torchaudio cudatoolkit=10.2 # 注意这条命令指定Pytorch的版本和cuda的版本
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cpuonly # CPU的小伙伴直接执行这条命令即可

安装完毕之后,我们来测试一下GPU是否

image-20210726172454406

安装unet程序所需的其他包

程序其他所需要的包我写在了requirements.txt文件中,大家只需要在项目目录下打开cmd,然后执行下列命令安装即可,安装之前请确保你已经激活了虚拟环境

pip install -r requirements.txt

到这里我们的环境基本已经配置完成了,你已经成功了一大半了,下面只需要按照教程完成剩下的步骤即可。

数据处理

数据处理部分,医学影像这块我们一般使用公开的数据集,如果没有合适的数据集大家也可以选择自己进行标注,分割相对于检测而言标注起来比较麻烦,所以能找到公开的数据集最好使用公开的数据集,这里也放一些我收集和处理好的数据集,大家有需要的可以自取。

以下面的皮肤病数据集为例,其中左侧是原始图片,右侧是标注之后的标签,因为标签有两种像素值,背景为0,皮肤病区域为1,所以我们肉眼上看到的标签图片是全黑,但是实际上这些标签文件中的值是不一样的。

image-20220213210042488

记住这里数据集的位置,后面在训练和测试的时候在代码中替换为自己本地的数据集位置。

注:下面的内容是关于数据集的标注,如果大家已经找到合适的数据集,请自行跳过这部分的内容

  • 1.LabelMe的安装

用户在采集完用于训练、评估和预测的图片之后,需使用数据标注工具LabelMe完成数据标注。LabelMe支持在Windows/macOS/Linux三个系统上使用,且三个系统下的标注格式是一样。

安装的过程非常简单,大家只需要在激活虚拟环境的前提下,执行下列之类即可

pip install labelme

安装完成之后,直接在命令行中输入labelme即可启动

  • 2.LabelMe的使用

打开终端输入labelme会出现LableMe的交互界面,可以先预览LabelMe给出的已标注好的图片,再开始标注自定义数据集。

图1 LableMe交互界面的示意图

  • 预览已标注图片

终端输入labelme会出现LableMe的交互界面,点击OpenDir打开<path/to/labelme>/examples/semantic_segmentation/data_annotated,其中<path/to/labelme>为克隆下来的labelme的路径,打开后示意的是语义分割的真值标注。

图2 已标注图片的示意图

  • 开始标注

请按照下述步骤标注数据集:

​ (1) 点击OpenDir打开待标注图片所在目录,点击Create Polygons,沿着目标的边缘画多边形,完成后输入目标的类别。在标注过程中,如果某个点画错了,可以按撤销快捷键可撤销该点。Mac下的撤销快捷键为command+Z

图3 标注单个目标的示意图

​ (2) 右击选择Edit Polygons可以整体移动多边形的位置,也可以移动某个点的位置;右击选择Edit Label可以修改每个目标的类别。请根据自己的需要执行这一步骤,若不需要修改,可跳过。

图4 修改标注的示意图

​ (3) 图片中所有目标的标注都完成后,点击Save保存json文件,请将json文件和图片放在同一个文件夹里,点击Next Image标注下一张图片。

LableMe产出的真值文件可参考我们给出的文件夹。

图5 LableMe产出的真值文件的示意图

Note:

对于中间有空洞的目标的标注方法:在标注完目标轮廓后,再沿空洞区域边缘画多边形,并将其指定为其他类别,如果是背景则指定为_background_。如下:

图6 带空洞目标的标注示意图

  • 3.数据格式转换

最后用我们提供的数据转换脚本将上述标注工具产出的数据格式转换为模型训练时所需的数据格式。

  • 经过数据格式转换后的数据集目录结构如下:
my_dataset                 # 根目录
|-- annotations            # 数据集真值
|   |-- xxx.png            # 像素级别的真值信息
|   |...
|-- class_names.txt        # 数据集的类别名称
|-- xxx.jpg(png or other)  # 数据集原图
|-- ...
|-- xxx.json               # 标注json文件
|-- ...

图7 格式转换后的数据集目录的结构示意图

  • 4.运行以下代码,将标注后的数据转换成满足以上格式的数据集:
  python labelme2seg.py <PATH/TO/LABEL_JSON_FILE>

其中,<PATH/TO/LABEL_JSON_FILE>为图片以及LabelMe产出的json文件所在文件夹的目录,同时也是转换后的标注集所在文件夹的目录。

我们已内置了一个标注的示例,可运行以下代码进行体验:

python labelme2seg.py docs/annotation/labelme_demo/

转换得到的数据集可参考我们给出的文件夹。其中,文件class_names.txt是数据集中所有标注类别的名称,包含背景类;文件夹annotations保存的是各图片的像素级别的真值信息,背景类_background_对应为0,其它目标类别从1开始递增,至多为255。

图8 格式转换后的数据集各目录的内容示意图

模型训练

现在来到模型训练的环境,首先请大家把自己的图片和标签按照下面的文件夹命名放在对应的位置。

image-20220213211409394

比如我这里的数据集位置在F:/xxxxxxxxxx/xianyu/data/skin

然后大家找到项目的train目录,修改数据集的位置即可

image-20220213211656907

修改之后,直接右键run运行train.py即可,训练过程中将会有个进度条来显示你训练的速度,如果是GPU的话速度会很快

image-20220213211927161

模型将会保存在本地目录下:

image-20220213211807530

模型验证

模型训练结束之后,我们可以使用一些指标来测试模型的性能,语义分割常用的测试指标是miou,定义如下:

img

这部分代码在test.py文件中,和刚才的train.py一样,大家只需要更改模型和数据集的位置即可

首先需要大家在22行修改需要测试的图片路径,测试结果保存的路径,和测试标签的路径

image-20220213212247998

然后再代码的第59行修改为对应的模型名称即可。

image-20220213212356003

修改完成之后直接右键run开始运行,运行的结果将会保存在项目目录的results文件夹下:

image-20220213212506859

大家可以在论文中用自己的语言阐述这三个指标,然后放对应的图上去,这样你的毕设就显得有血有肉了。

image-20220213212557672

图形化界面

最后就是我们这个语义分割的系统了,系统本身很复杂,但是只是毕设,所以这里的系统简单理解就是用Pyqt5给我们的代码加个壳子这样,系统的代码在ui.py,大家只需要在代码的第46行修改为自己的模型文件即可。

image-20220213212806125

运行的结果如下:

image-20220213213018281

完整代码下载地址:基于Python Unet的医学影像分割系统源码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/143027.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JAVA语言基础语法——JVM虚拟机默认处理异常的方式,try...catch捕获异常

1.JVM默认的处理方式 a&#xff0e;把异常的名称&#xff0c;异常原因及异常出现的位置等信息输出在了控制台 运行结果如下&#xff1a; b&#xff0e;程序停止执行&#xff0c;异常下面的代码不会再执行了 2.try...catch捕获异常&#xff08;自己处理&#xff0c;捕获异常&am…

数学建模-相关性分析(Matlab)

注意&#xff1a;代码文件仅供参考&#xff0c;一定不要直接用于自己的数模论文中 国赛对于论文的查重要求非常严格&#xff0c;代码雷同也算作抄袭 如何修改代码避免查重的方法&#xff1a;https://www.bilibili.com/video/av59423231 //清风数学建模 一、基础知识 1.皮尔逊…

Qt之Json操作demo

一、JSON简介&#xff1a; JSON(JavaScript Object Notation)是一种轻量级的数据交换格式&#xff0c;使用JavaScript语法来描述数据对象&#xff0c;但是JSON仍然独立于语言和平台。JSON解析器和JSON库支持许多不同的编程语言&#xff0c;被广泛用于Internet上的数据交换格式。…

多线程高级(线程状态、线程池、volatile、原子性、并发工具)

1.线程池 1.1 线程状态介绍 当线程被创建并启动以后&#xff0c;它既不是一启动就进入了执行状态&#xff0c;也不是一直处于执行状态。线程对象在不同的时期有不同的状态。那么Java中的线程存在哪几种状态呢&#xff1f;Java中的线程 状态被定义在了java.lang.Thread.State…

Java程序:jstack

前言 如果有一天&#xff0c;你的Java程序长时间停顿&#xff0c;也许是它病了&#xff0c;需要用jstack拍个片子分析分析&#xff0c;才能诊断具体什么病症&#xff0c;是死锁综合征&#xff0c;还是死循环等其他病症&#xff0c;本文我们一起来学习jstack命令~ jstack 的功能…

阳康后的第一篇博客,先来几道恶心二进制编程题

目录 一、统计二进制中1的个数 二、打印整数二进制的奇数位和偶数位 三、两个整数二进制位不同个数 一、统计二进制中1的个数 这是一道牛客网OJ题&#xff0c;感兴趣的话可以先做一遍再看解析哦 -> 牛客网的OJ链接 注意&#xff1a;上面的牛客网是接口型&#xff0c;不需…

Vagrant管理已存在的虚拟机

起因 某天打开VirtualBox后&#xff0c;发现之前创建的虚拟机都没了&#xff0c;后将虚拟机从本地磁盘又重新导入&#xff0c;但是发现使用 vagrant up 会创建新的虚拟机&#xff0c;而我要用vagrant管理已存在的虚拟机&#xff0c;就是 vagrant up的时候&#xff0c;我需要启动…

MySQL数据库:常用数据类型

一、整形和浮点型 数据类型大小说明对应C类型bit(n)n指定比特位数&#xff0c;默认1位比特位数&#xff0c;n范围1-64&#xff1b;存储数值范围2-2^n-1char[]tinyint1字节signed charsmallint2字节short intint4字节intbigint8字节long long intfloat(m,d)4字节单精度&#xf…

【前端】CSS基础

一、CSS基础 1.1CSS的介绍 CSS&#xff1a;层叠样式表&#xff08;Cascading style sheets&#xff09; CSS作用是什么&#xff1f;&#xff1f; 1.2CSS语法规则 写在哪里&#xff1f; CSS是style标签中&#xff0c;style标签一般写在head标签里面&#xff0c;title标签下…

真的强,又一个开源项目,杀疯了

最近&#xff0c;AI大模型连续火爆出圈&#xff0c;人工智能生成模型&#xff08;AIGC&#xff09;的热度尚未褪去&#xff0c;聊天机器人ChatGPT便引发全网热议&#xff0c;两周吸引百万用户。还有卷趴一半程序员的AlphaCode&#xff0c;生成全新蛋白质的ESM2等&#xff0c;不…

TypeScript,终于在实际项目中用到了泛型。

终于在实际项目中用到了泛型 里程碑式的纪录&#xff0c;终于不是anyScript了&#xff0c;代码写完只有一个any 应用 项目中组件化了这么一个东西 功能描述&#xff1a; 传进去一个数组&#xff0c;有个名&#xff0c;有个key&#xff0c;渲染成上图的div样式点击之后&#…

Triple 协议支持 Java 异常回传的设计与实现

作者&#xff1a;陈景明 背景 在一些业务场景&#xff0c;往往需要自定义异常来满足特定的业务&#xff0c;主流用法是在catch里抛出异常&#xff0c;例如&#xff1a; public void deal() {try{//doSomething ...} catch(IGreeterException e) {...throw e;} }或者通过…

Python面向对象(九)

python学习之旅(九) &#x1f44d;查看更多可以关注查看首页或点击下方专栏目录 一.什么是面向对象 万物皆对象 现实世界的事物都有属性和行为,可在程序中抽离为类来描述现实世界的事物属性和行为。 使用类充当程序内现实事物的“设计图纸”&#xff0c;基于图纸(类)生产实体…

10. 正则表达式匹配

题目链接&#xff1a;https://leetcode.cn/problems/regular-expression-matching/从暴力递归到动态规划&#xff0c;对于状态转移方程不容易推导出来的可以先从递归进行尝试各种策略&#xff0c;最后再从暴力递归转为动态规划&#xff0c;这种尝试方式容易求解dp初始值以及dp更…

数据结构-考研难点代码突破 (图关键路径完全解析(流程+代码) - C++代码)

考研在关键路径上的考察以流程为主 文章目录1. AOE网2. 关键路径问题解决流程C代码1. AOE网 首先区分AOV网&#xff1a; AOV网∶若用DAG 图&#xff08;有向无环图&#xff09;表示一个工程&#xff0c;其顶点表示活动&#xff0c;用有向边<Vi&#xff0c;Vj>表示活动 V…

【ESP32+freeRTOS学习笔记-(五)队列Queue】

目录1、什么是队列Queue2、队列的多任务特性2.1 多任务的访问&#xff1a;2.2 队列读取阻塞&#xff1a;2.3 写队列阻塞&#xff1a;2.4 阻塞于多个队列&#xff1a;3、队列的使用3.1 创建队列--The xQueueCreate() API3.2 写入队列3.3 从队列中接收数据3.4 删除队列4、队列集4…

ReactDOM.render在react源码中执行之后发生了什么?

ReactDOM.render 通常是如下图使用&#xff0c;在提供的 container 里渲染一个 React 元素&#xff0c;并返回对该组件的引用&#xff08;或者针对无状态组件返回 null&#xff09;。本文主要是将ReactDOM.render的执行流程在后续文章中会对创建更新的细节进行分析&#xff0c…

MATLAB-plot3/ezplot3三维绘图

&#xff08;1&#xff09; plot3是三维绘图的基本函数&#xff0c;调用格式如下。1、plot3( X,Y,Z):绘制简单的三维曲线&#xff0c;当X、Y、Z是长度相同的向量时&#xff0c;plot3命令将绘制以向量X、Y、Z为(x, y,z)坐标值的三维曲线;当X、Y、Z是mn矩阵时,plot3命令将绘制m条…

Android 虚拟分区详解(四) 编译开关

Android Virtual A/B 系统简称 VAB,我将其称为虚拟分区。 本系列文章基于 Android R(11) 进行分析,如果没有特别说明,均基于代码版本 android-11.0.0_r46 请已经购买《Android 虚拟分区》专栏的朋友加我 wx 进 "虚拟分区专栏 VIP 答疑"群,作为本专栏文章的附加服…

(6)元对象系统与信号与槽机制

1. 元对象系统 元对象系统是一个基于标准C的扩展&#xff0c;为Qt提供了信号与槽机制、实时类型信息、动态属性系统。 什么是元对象 在计算机科学中&#xff0c;元对象是这样一个东西&#xff1a;它可以操纵、创建、描述、或执行其他对象。元对象描述的对象称为基对象。元对象可…