多线程高级(线程状态、线程池、volatile、原子性、并发工具)

news2024/11/27 20:36:50

1.线程池

1.1 线程状态介绍

当线程被创建并启动以后,它既不是一启动就进入了执行状态,也不是一直处于执行状态。线程对象在不同的时期有不同的状态。那么Java中的线程存在哪几种状态呢?Java中的线程

状态被定义在了java.lang.Thread.State枚举类中,State枚举类的源码如下:

 
    public enum State {
    
        /* 新建 */
        NEW , 

        /* 可运行状态 */
        RUNNABLE , 

        /* 阻塞状态 */
        BLOCKED , 

        /* 无限等待状态 */
        WAITING , 

        /* 计时等待 */
        TIMED_WAITING , 

        /* 终止 */
        TERMINATED;
    
    }
    
    // 获取当前线程的状态
    public State getState() {
        return jdk.internal.misc.VM.toThreadState(threadStatus);
    }

1.2 线程池-基本原理

概述 :

提到池,大家应该能想到的就是水池。水池就是一个容器,在该容器中存储了很多的水。那么什么是线程池呢?线程池也是可以看做成一个池子,在该池子中存储很多个线程。

线程池存在的意义:

系统创建一个线程的成本是比较高的,因为它涉及到与操作系统交互,当程序中需要创建大量生存期很短暂的线程时,频繁的创建和销毁线程对系统的资源消耗有可能大于业务处理是对系

统资源的消耗,这样就有点"舍本逐末"了。针对这一种情况,为了提高性能,我们就可以采用线程池。线程池在启动的时,会创建大量空闲线程,当我们向线程池提交任务的时,线程池就

会启动一个线程来执行该任务。等待任务执行完毕以后,线程并不会死亡,而是再次返回到线程池中称为空闲状态。等待下一次任务的执行。

线程池的设计思路 :

  1. 准备一个任务容器

  2. 一次性启动多个(2个)消费者线程

  3. 刚开始任务容器是空的,所以线程都在wait

  4. 直到一个外部线程向这个任务容器 中扔了一个"任务",就会有一个消费者线程被唤醒

  5. 这个消费者线程取出"任务",并且执行这个任务,执行完毕后,继续等待下一次任务的到来

1.3 线程池-Executors默认线程池

概述 : JDK对线程池也进行了相关的实现,在真实企业开发中我们也很少去自定义线程池,而是使用JDK中自带的线程池。

我们可以使用Executors中所提供的静态方法来创建线程池

static ExecutorService newCachedThreadPool() 创建一个默认的线程池 ​ static newFixedThreadPool(int nThreads) 创建一个指定最多线程数量的线程池

 

//1,创建一个默认的线程池对象.池子中默认是空的.默认最多可以容纳int类型的最大值.
        ExecutorService executorService = Executors.newCachedThreadPool();
        //Executors --- 可以帮助我们创建线程池对象
        //ExecutorService --- 可以帮助我们控制线程池

        executorService.submit(()->{
            System.out.println(Thread.currentThread().getName() + "在执行了");
        });

        //Thread.sleep(2000);

        executorService.su bmit(()->{
            System.out.println(Thread.currentThread().getName() + "在执行了");
        });

        executorService.shutdown();
    }

1.4 线程池-Executors创建指定上限的线程池

使用Executors中所提供的静态方法来创建线程池

static ExecutorService newFixedThreadPool(int nThreads) : 创建一个指定最多线程数量的线程池

代码实现 :

 

//static ExecutorService newFixedThreadPool(int nThreads)
//创建一个指定最多线程数量的线程池

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.ThreadPoolExecutor;

public class MyThreadPoolDemo2 {
    public static void main(String[] args) {
        //参数不是初始值而是最大值
        ExecutorService executorService = Executors.newFixedThreadPool(10);

        ThreadPoolExecutor pool = (ThreadPoolExecutor) executorService;
        System.out.println(pool.getPoolSize());//0

        executorService.submit(()->{
            System.out.println(Thread.currentThread().getName() + "在执行了");
        });

        executorService.submit(()->{
            System.out.println(Thread.currentThread().getName() + "在执行了");
        });

        System.out.println(pool.getPoolSize());//2
//        executorService.shutdown();

1.5 线程池-ThreadPoolExecutor

创建线程池对象 :

ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(核心线程数量,最大线程数量,空闲线程最大存活时间,任务队列,创建线程工厂,任务的拒绝策略);

代码实现 :

public class MyThreadPoolDemo3 {
//    参数一:核心线程数量
//    参数二:最大线程数
//    参数三:空闲线程最大存活时间
//    参数四:时间单位
//    参数五:任务队列
//    参数六:创建线程工厂
//    参数七:任务的拒绝策略
    public static void main(String[] args) {
        ThreadPoolExecutor pool = new ThreadPoolExecutor(2,5,2,TimeUnit.SECONDS,new ArrayBlockingQueue<>(10), Executors.defaultThreadFactory(),new ThreadPoolExecutor.AbortPolicy());
        pool.submit(new MyRunnable());
        pool.submit(new MyRunnable());

        pool.shutdown();

1.6 线程池-参数详解

 public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler)
    
corePoolSize:   核心线程的最大值,不能小于0
maximumPoolSize:最大线程数,不能小于等于0,maximumPoolSize >= corePoolSize
keepAliveTime:  空闲线程最大存活时间,不能小于0
unit:           时间单位
workQueue:      任务队列,不能为null
threadFactory:  创建线程工厂,不能为null      
handler:        任务的拒绝策略,不能为null  

1.7 线程池-非默认任务拒绝策略

RejectedExecutionHandler是jdk提供的一个任务拒绝策略接口,它下面存在4个子类。

ThreadPoolExecutor.AbortPolicy:             丢弃任务并抛出RejectedExecutionException异常。是默认的策略。
ThreadPoolExecutor.DiscardPolicy:            丢弃任务,但是不抛出异常 这是不推荐的做法。
ThreadPoolExecutor.DiscardOldestPolicy:    抛弃队列中等待最久的任务 然后把当前任务加入队列中。
ThreadPoolExecutor.CallerRunsPolicy:        调用任务的run()方法绕过线程池直接执行。

注:明确线程池对多可执行的任务数 = 队列容量 + 最大线程数

案例演示1:演示ThreadPoolExecutor.AbortPolicy任务处理策略

   * 核心线程数量为1 , 最大线程池数量为3, 任务容器的容量为1 ,空闲线程的最大存在时间为20s
         */
        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(1 , 3 , 20 , TimeUnit.SECONDS ,
                new ArrayBlockingQueue<>(1) , Executors.defaultThreadFactory() , new ThreadPoolExecutor.AbortPolicy()) ;

        // 提交5个任务,而该线程池最多可以处理4个任务,当我们使用AbortPolicy这个任务处理策略的时候,就会抛出异常
        for(int x = 0 ; x < 5 ; x++) {
            threadPoolExecutor.submit(() -> {
                System.out.println(Thread.currentThread().getName() + "---->> 执行了任务");
            });

控制台输出结果

案例演示4:演示ThreadPoolExecutor.CallerRunsPolicy任务处理策略

 
/**
         * 核心线程数量为1 , 最大线程池数量为3, 任务容器的容量为1 ,空闲线程的最大存在时间为20s
         */
        ThreadPoolExecutor threadPoolExecutor;
        threadPoolExecutor = new ThreadPoolExecutor(1 , 3 , 20 , TimeUnit.SECONDS ,
                new ArrayBlockingQueue<>(1) , Executors.defaultThreadFactory() , new ThreadPoolExecutor.CallerRunsPolicy());

        // 提交5个任务
        for(int x = 0 ; x < 5 ; x++) {
            threadPoolExecutor.submit(() -> {
                System.out.println(Thread.currentThread().getName() + "---->> 执行了任务");
            });

2. 原子性

2.1 volatile-问题

 

 

2.2 volatile解决

以上案例出现的问题 :

当A线程修改了共享数据时,B线程没有及时获取到最新的值,如果还在使用原先的值,就会出现问题

1,堆内存是唯一的,每一个线程都有自己的线程栈。

2 ,每一个线程在使用堆里面变量的时候,都会先拷贝一份到变量的副本中。

3 ,在线程中,每一次使用是从变量的副本中获取的。

Volatile关键字 : 强制线程每次在使用的时候,都会看一下共享区域最新的值

代码实现 : 使用volatile关键字解决

package com.itheima.myvolatile;

public class Money {
    public static volatile int money = 100000;
}

2.3 synchronized解决

synchronized解决 :

1 ,线程获得锁

2 ,清空变量副本

3 ,拷贝共享变量最新的值到变量副本中

4 ,执行代码

5 ,将修改后变量副本中的值赋值给共享数据

6 ,释放锁

代码实现 :

public class Money {
    public static Object lock = new Object();
    public static volatile int money = 100000;
}

public class MyThread1 extends  Thread {
    @Override
    public void run() {
        while(true){
            synchronized (Money.lock){
                if(Money.money != 100000){
                    System.out.println("结婚基金已经不是十万了");
                    break;

public class MyThread2 extends Thread {
    @Override
    public void run() {
        synchronized (Money.lock) {
            try {
                Thread.sleep(10);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            Money.money = 90000;

2.4 原子性

概述 : 所谓的原子性是指在一次操作或者多次操作中,要么所有的操作全部都得到了执行并且不会受到任何因素的干扰而中断,要么所有的操作都不执行,多个操作是一个不可以分割的整体。

public class AtomDemo {
    public static void main(String[] args) {
        MyAtomThread atom = new MyAtomThread();

        for (int i = 0; i < 100; i++) {
            new Thread(atom).start();
        }
    }
}
class MyAtomThread implements Runnable {
    private volatile int count = 0; //送冰淇淋的数量

    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            //1,从共享数据中读取数据到本线程栈中.
            //2,修改本线程栈中变量副本的值
            //3,会把本线程栈中变量副本的值赋值给共享数据.
            count++;
            System.out.println("已经送了" + count + "个冰淇淋");

代码总结 : count++ 不是一个原子性操作, 他在执行的过程中,有可能被其他线程打断

2.5 volatile关键字不能保证原子性

 解决方案 : 我们可以给count++操作添加锁,那么count++操作就是临界区中的代码,临界区中的代码一次只能被一个线程去执行,所以count++就变成了原子操作。

 private volatile int count = 0; //送冰淇淋的数量
    private Object lock = new Object();

    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            //1,从共享数据中读取数据到本线程栈中.
            //2,修改本线程栈中变量副本的值
            //3,会把本线程栈中变量副本的值赋值给共享数据.
            synchronized (lock) {
                count++;
                System.out.println("已经送了" + count + "个冰淇淋");

2.6 原子性_AtomicInteger

概述:java从JDK1.5开始提供了java.util.concurrent.atomic包(简称Atomic包),这个包中的原子操作类提供了一种用法简单,性能高效,线程安全地更新一个变量的方式。因为变

量的类型有很多种,所以在Atomic包里一共提供了13个类,属于4种类型的原子更新方式,分别是原子更新基本类型、原子更新数组、原子更新引用和原子更新属性(字段)。本次我们只讲解

使用原子的方式更新基本类型,使用原子的方式更新基本类型Atomic包提供了以下3个类:

AtomicBoolean: 原子更新布尔类型

AtomicInteger: 原子更新整型

AtomicLong: 原子更新长整型

以上3个类提供的方法几乎一模一样,所以本节仅以AtomicInteger为例进行讲解,AtomicInteger的常用方法如下:

public class AtomDemo {
    public static void main(String[] args) {
        MyAtomThread atom = new MyAtomThread();

        for (int i = 0; i < 100; i++) {
            new Thread(atom).start();

public class MyAtomThread implements Runnable {
    //private volatile int count = 0; //送冰淇淋的数量
    //private Object lock = new Object();
    AtomicInteger ac = new AtomicInteger(0);

    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            //1,从共享数据中读取数据到本线程栈中.
            //2,修改本线程栈中变量副本的值
            //3,会把本线程栈中变量副本的值赋值给共享数据.
            //synchronized (lock) {
//                count++;
//                ac++;
            int count = ac.incrementAndGet();
            System.out.println("已经送了" + count + "个冰淇淋");

2.7 AtomicInteger-内存解析

AtomicInteger原理 : 自旋锁 + CAS 算法

CAS算法:

有3个操作数(内存值V, 旧的预期值A,要修改的值B)

当旧的预期值A == 内存值 此时修改成功,将V改为B

当旧的预期值A!=内存值 此时修改失败,不做任何操作

并重新获取现在的最新值(这个重新获取的动作就是自旋

 

2.8 AtomicInteger-源码解析

源码解析 :

//先自增,然后获取自增后的结果
public final int incrementAndGet() {
        //+ 1 自增后的结果
        //this 就表示当前的atomicInteger(值)
        //1    自增一次
        return U.getAndAddInt(this, VALUE, 1) + 1;
}

public final int getAndAddInt(Object o, long offset, int delta) {
        //v 旧值
        int v;
        //自旋的过程
        do {
            //不断的获取旧值
            v = getIntVolatile(o, offset);
            //如果这个方法的返回值为false,那么继续自旋
            //如果这个方法的返回值为true,那么自旋结束
            //o 表示的就是内存值
            //v 旧值
            //v + delta 修改后的值
        } while (!weakCompareAndSetInt(o, offset, v, v + delta));
            //作用:比较内存中的值,旧值是否相等,如果相等就把修改后的值写到内存中,返回true。表示修改成功。
            //                                 如果不相等,无法把修改后的值写到内存中,返回false。表示修改失败。
            //如果修改失败,那么继续自旋。
        return v;
}

2.9 悲观锁和乐观锁

synchronized和CAS的区别 :

相同点:在多线程情况下,都可以保证共享数据的安全性。

不同点:synchronized总是从最坏的角度出发,认为每次获取数据的时候,别人都有可能修改。所以在每 次操作共享数据之前,都会上锁。(悲观锁)

cas是从乐观的角度出发,假设每次获取数据别人都不会修改,所以不会上锁。只不过在修改共享数据的时候,会检查一下,别人有没有修改过这个数据。

如果别人修改过,那么我再次获取现在最新的值。

如果别人没有修改过,那么我现在直接修改共享数据的值.(乐观锁)

3. 并发工具类

3.1 并发工具类-Hashtable

Hashtable出现的原因 : 在集合类中HashMap是比较常用的集合对象,但是HashMap是线程不安全的(多线程环境下可能会存在问题)。为了保证数据的安全性我们可以使用Hashtable,但是Hashtable的效率低下。

Hashtable<String, String> hm = new Hashtable<>();

        Thread t1 = new Thread(() -> {
            for (int i = 0; i < 25; i++) {
                hm.put(i + "", i + "");
            }
        });


        Thread t2 = new Thread(() -> {
            for (int i = 25; i < 51; i++) {
                hm.put(i + "", i + "");
            }
        });

        t1.start();
        t2.start();

        System.out.println("----------------------------");
        //为了t1和t2能把数据全部添加完毕
        Thread.sleep(1000);

        //0-0 1-1 ..... 50- 50

        for (int i = 0; i < 51; i++) {
            System.out.println(hm.get(i + ""));
        }//0 1 2 3 .... 50

3.2 并发工具类-ConcurrentHashMap基本使用

ConcurrentHashMap出现的原因 : 在集合类中HashMap是比较常用的集合对象,但是HashMap是线程不安全的(多线程环境下可能会存在问题)。为了保证数据的安全性我们可以使用Hashtable,但是Hashtable的效率低下。

基于以上两个原因我们可以使用JDK1.5以后所提供的ConcurrentHashMap。

体系结构 :

 

总结 :

1 ,HashMap是线程不安全的。多线程环境下会有数据安全问题

2 ,Hashtable是线程安全的,但是会将整张表锁起来,效率低下

3,ConcurrentHashMap也是线程安全的,效率较高。 在JDK7和JDK8中,底层原理不一样。

   ConcurrentHashMap<String, String> hm = new ConcurrentHashMap<>(100);

        Thread t1 = new Thread(() -> {
            for (int i = 0; i < 25; i++) {
                hm.put(i + "", i + "");
            }
        });


        Thread t2 = new Thread(() -> {
            for (int i = 25; i < 51; i++) {
                hm.put(i + "", i + "");
            }
        });

        t1.start();
        t2.start();

        System.out.println("----------------------------");
        //为了t1和t2能把数据全部添加完毕
        Thread.sleep(1000);

        //0-0 1-1 ..... 50- 50

        for (int i = 0; i < 51; i++) {
            System.out.println(hm.get(i + ""));
        }//0 1 2 3 .... 50

3.3 并发工具类-ConcurrentHashMap1.7原理

  

3.4 并发工具类-ConcurrentHashMap1.8原理

 

总结 :

1,如果使用空参构造创建ConcurrentHashMap对象,则什么事情都不做。 在第一次添加元素的时候创建哈希表

2,计算当前元素应存入的索引。

3,如果该索引位置为null,则利用cas算法,将本结点添加到数组中。

4,如果该索引位置不为null,则利用volatile关键字获得当前位置最新的结点地址,挂在他下面,变成链表。

5,当链表的长度大于等于8时,自动转换成红黑树6,以链表或者红黑树头结点为锁对象,配合悲观锁保证多线程操作集合时数据的安全性

3.5 并发工具类-CountDownLatch

CountDownLatch类 :

方法解释
public CountDownLatch(int count)参数传递线程数,表示等待线程数量
public void await()让线程等待
public void countDown()当前线程执行完毕

使用场景: 让某一条线程等待其他线程执行完毕之后再执行

 

public class ChileThread1 extends Thread {

    private CountDownLatch countDownLatch;
    public ChileThread1(CountDownLatch countDownLatch) {
        this.countDownLatch = countDownLatch;
    }

    @Override
    public void run() {
        //1.吃饺子
        for (int i = 1; i <= 10; i++) {
            System.out.println(getName() + "在吃第" + i + "个饺子");
        }
        //2.吃完说一声
        //每一次countDown方法的时候,就让计数器-1
        countDownLatch.countDown();
    }

public class MotherThread extends Thread {
    private CountDownLatch countDownLatch;
    public MotherThread(CountDownLatch countDownLatch) {
        this.countDownLatch = countDownLatch;
    }

    @Override
    public void run() {
        //1.等待
        try {
            //当计数器变成0的时候,会自动唤醒这里等待的线程。
            countDownLatch.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        //2.收拾碗筷
        System.out.println("妈妈在收拾碗筷");
    }
}

//1.创建CountDownLatch的对象,需要传递给四个线程。
        //在底层就定义了一个计数器,此时计数器的值就是3
        CountDownLatch countDownLatch = new CountDownLatch(3);
        //2.创建四个线程对象并开启他们。
        MotherThread motherThread = new MotherThread(countDownLatch);
        motherThread.start();

        ChileThread1 t1 = new ChileThread1(countDownLatch);
        t1.setName("小明");

        ChileThread2 t2 = new ChileThread2(countDownLatch);
        t2.setName("小红");

        ChileThread3 t3 = new ChileThread3(countDownLatch);
        t3.setName("小刚");

        t1.start();
        t2.start();
        t3.start();

总结 :

1. CountDownLatch(int count):参数写等待线程的数量。并定义了一个计数器。

2. await():让线程等待,当计数器为0时,会唤醒等待的线程

3. countDown(): 线程执行完毕时调用,会将计数器-1。

3.6 并发工具类-Semaphore

使用场景 :

可以控制访问特定资源的线程数量。

实现步骤 :

1,需要有人管理这个通道

2,当有车进来了,发通行许可证

3,当车出去了,收回通行许可证

4,如果通行许可证发完了,那么其他车辆只能等着

public class MyRunnable implements Runnable {
    //1.获得管理员对象,
    private Semaphore semaphore = new Semaphore(2);
    @Override
    public void run() {
        //2.获得通行证
        try {
            semaphore.acquire();
            //3.开始行驶
            System.out.println("获得了通行证开始行驶");
            Thread.sleep(2000);
            System.out.println("归还通行证");
            //4.归还通行证
            semaphore.release();
        } catch (InterruptedException e) {
            e.printStackTrace();

 

public class MySemaphoreDemo {
    public static void main(String[] args) {
        MyRunnable mr = new MyRunnable();

        for (int i = 0; i < 100; i++) {
            new Thread(mr).start();
        }
    }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/143020.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java程序:jstack

前言 如果有一天&#xff0c;你的Java程序长时间停顿&#xff0c;也许是它病了&#xff0c;需要用jstack拍个片子分析分析&#xff0c;才能诊断具体什么病症&#xff0c;是死锁综合征&#xff0c;还是死循环等其他病症&#xff0c;本文我们一起来学习jstack命令~ jstack 的功能…

阳康后的第一篇博客,先来几道恶心二进制编程题

目录 一、统计二进制中1的个数 二、打印整数二进制的奇数位和偶数位 三、两个整数二进制位不同个数 一、统计二进制中1的个数 这是一道牛客网OJ题&#xff0c;感兴趣的话可以先做一遍再看解析哦 -> 牛客网的OJ链接 注意&#xff1a;上面的牛客网是接口型&#xff0c;不需…

Vagrant管理已存在的虚拟机

起因 某天打开VirtualBox后&#xff0c;发现之前创建的虚拟机都没了&#xff0c;后将虚拟机从本地磁盘又重新导入&#xff0c;但是发现使用 vagrant up 会创建新的虚拟机&#xff0c;而我要用vagrant管理已存在的虚拟机&#xff0c;就是 vagrant up的时候&#xff0c;我需要启动…

MySQL数据库:常用数据类型

一、整形和浮点型 数据类型大小说明对应C类型bit(n)n指定比特位数&#xff0c;默认1位比特位数&#xff0c;n范围1-64&#xff1b;存储数值范围2-2^n-1char[]tinyint1字节signed charsmallint2字节short intint4字节intbigint8字节long long intfloat(m,d)4字节单精度&#xf…

【前端】CSS基础

一、CSS基础 1.1CSS的介绍 CSS&#xff1a;层叠样式表&#xff08;Cascading style sheets&#xff09; CSS作用是什么&#xff1f;&#xff1f; 1.2CSS语法规则 写在哪里&#xff1f; CSS是style标签中&#xff0c;style标签一般写在head标签里面&#xff0c;title标签下…

真的强,又一个开源项目,杀疯了

最近&#xff0c;AI大模型连续火爆出圈&#xff0c;人工智能生成模型&#xff08;AIGC&#xff09;的热度尚未褪去&#xff0c;聊天机器人ChatGPT便引发全网热议&#xff0c;两周吸引百万用户。还有卷趴一半程序员的AlphaCode&#xff0c;生成全新蛋白质的ESM2等&#xff0c;不…

TypeScript,终于在实际项目中用到了泛型。

终于在实际项目中用到了泛型 里程碑式的纪录&#xff0c;终于不是anyScript了&#xff0c;代码写完只有一个any 应用 项目中组件化了这么一个东西 功能描述&#xff1a; 传进去一个数组&#xff0c;有个名&#xff0c;有个key&#xff0c;渲染成上图的div样式点击之后&#…

Triple 协议支持 Java 异常回传的设计与实现

作者&#xff1a;陈景明 背景 在一些业务场景&#xff0c;往往需要自定义异常来满足特定的业务&#xff0c;主流用法是在catch里抛出异常&#xff0c;例如&#xff1a; public void deal() {try{//doSomething ...} catch(IGreeterException e) {...throw e;} }或者通过…

Python面向对象(九)

python学习之旅(九) &#x1f44d;查看更多可以关注查看首页或点击下方专栏目录 一.什么是面向对象 万物皆对象 现实世界的事物都有属性和行为,可在程序中抽离为类来描述现实世界的事物属性和行为。 使用类充当程序内现实事物的“设计图纸”&#xff0c;基于图纸(类)生产实体…

10. 正则表达式匹配

题目链接&#xff1a;https://leetcode.cn/problems/regular-expression-matching/从暴力递归到动态规划&#xff0c;对于状态转移方程不容易推导出来的可以先从递归进行尝试各种策略&#xff0c;最后再从暴力递归转为动态规划&#xff0c;这种尝试方式容易求解dp初始值以及dp更…

数据结构-考研难点代码突破 (图关键路径完全解析(流程+代码) - C++代码)

考研在关键路径上的考察以流程为主 文章目录1. AOE网2. 关键路径问题解决流程C代码1. AOE网 首先区分AOV网&#xff1a; AOV网∶若用DAG 图&#xff08;有向无环图&#xff09;表示一个工程&#xff0c;其顶点表示活动&#xff0c;用有向边<Vi&#xff0c;Vj>表示活动 V…

【ESP32+freeRTOS学习笔记-(五)队列Queue】

目录1、什么是队列Queue2、队列的多任务特性2.1 多任务的访问&#xff1a;2.2 队列读取阻塞&#xff1a;2.3 写队列阻塞&#xff1a;2.4 阻塞于多个队列&#xff1a;3、队列的使用3.1 创建队列--The xQueueCreate() API3.2 写入队列3.3 从队列中接收数据3.4 删除队列4、队列集4…

ReactDOM.render在react源码中执行之后发生了什么?

ReactDOM.render 通常是如下图使用&#xff0c;在提供的 container 里渲染一个 React 元素&#xff0c;并返回对该组件的引用&#xff08;或者针对无状态组件返回 null&#xff09;。本文主要是将ReactDOM.render的执行流程在后续文章中会对创建更新的细节进行分析&#xff0c…

MATLAB-plot3/ezplot3三维绘图

&#xff08;1&#xff09; plot3是三维绘图的基本函数&#xff0c;调用格式如下。1、plot3( X,Y,Z):绘制简单的三维曲线&#xff0c;当X、Y、Z是长度相同的向量时&#xff0c;plot3命令将绘制以向量X、Y、Z为(x, y,z)坐标值的三维曲线;当X、Y、Z是mn矩阵时,plot3命令将绘制m条…

Android 虚拟分区详解(四) 编译开关

Android Virtual A/B 系统简称 VAB,我将其称为虚拟分区。 本系列文章基于 Android R(11) 进行分析,如果没有特别说明,均基于代码版本 android-11.0.0_r46 请已经购买《Android 虚拟分区》专栏的朋友加我 wx 进 "虚拟分区专栏 VIP 答疑"群,作为本专栏文章的附加服…

(6)元对象系统与信号与槽机制

1. 元对象系统 元对象系统是一个基于标准C的扩展&#xff0c;为Qt提供了信号与槽机制、实时类型信息、动态属性系统。 什么是元对象 在计算机科学中&#xff0c;元对象是这样一个东西&#xff1a;它可以操纵、创建、描述、或执行其他对象。元对象描述的对象称为基对象。元对象可…

记一次搭建备库,使用连接串主库无法连接到备库

主库使用连接串连接备库失败 SQL> conn sys/oracleorcldg as sysdba ERROR: ORA-12528: TNS:listener: all appropriate instances are blocking new connections 备库已经建立了静态监听 # listener.ora Network Configuration File: /u01/app/oracle/product/11.2.0/db_1/…

安全寒假第一堂课

一、状态码 200 – 服务器成功返回网页 404 – 请求的网页不存在 503 – 服务器超时 1xx&#xff08;临时响应&#xff09; 表示临时响应并需要请求者继续执行操作的状态码。 100&#xff08;继续&#xff09; 请求者应当继续提出请求。服务器返回此代码表示已收到请求的第一…

OpenCV实战(5)——图像运算详解

OpenCV实战&#xff08;5&#xff09;——图像运算详解0. 前言1. 图像基本运算2. 重载图像运算符2.1 加法运算符重载2.2 分割图像通道2.3 完整代码3. 图像重映射3.1 OpenCV 重映射函数3.2 完整代码小结系列链接0. 前言 图像可以以不同的方式进行组合&#xff0c;因为它们是正则…

XGBoost论文阅读

XGBoost: A Scalable Tree Boosting System 目录 XGBoost: A Scalable Tree Boosting System 1.摘要 2.方法 2.1 正则化学习目标 2.2 梯度提升树 2.3 收缩率和列采样 2.4分裂点查找算法 1.摘要 提出了一种新的稀疏性感知算法&#xff0c;用于稀疏数据和加权全图草图&a…