【24美赛思路已出】2024年美赛A~F题解题思路已出 | 无偿自提

news2024/11/15 8:57:50

 A题:资源可用性和性别比例

问题一:

涉及当灯鱼种群的性别比例发生变化时,对更大的生态系统产生的影响。为了分析这个问题,可以采用以下的数学建模思路:
建立灯鱼种群模型: 首先,建立一个灯鱼种群的动力学模型,考虑到性别比例的变化。这个模型需要考虑灯鱼的繁殖、生长、死亡等基本过程,并特别关注性别比例的变异。
确定性别比例变化规律: 利用已知的数据和观测结果,建立一个与食物供应、环境条件等相关的性别比例模型。这可能涉及到差分方程或微分方程,其中模型的参数需要从实际观测中获取。
定义生态系统指标: 为了评估对更大生态系统的影响,定义一些生态系统的指标,例如物种多样性、食物链稳定性、能量流动等。这些指标可以通过数学方程来表示,并与灯鱼种群的性别比例联系在一起。

  

涉及当灯鱼种群的性别比例发生变化时,对更大的生态系统产生的影响。为了分析这个问题,可以采用以下的数学建模思路:
建立灯鱼种群模型: 首先,建立一个灯鱼种群的动力学模型,考虑到性别比例的变化。这个模型需要考虑灯鱼的繁殖、生长、死亡等基本过程,并特别关注性别比例的变异。
确定性别比例变化规律: 利用已知的数据和观测结果,建立一个与食物供应、环境条件等相关的性别比例模型。这可能涉及到差分方程或微分方程,其中模型的参数需要从实际观测中获取。
定义生态系统指标: 为了评估对更大生态系统的影响,定义一些生态系统的指标,例如物种多样性、食物链稳定性、能量流动等。这些指标可以通过数学方程来表示,并与灯鱼种群的性别比例联系在一起。

# 模型参数
r_F = 0.1  # 雌性出生率
r_M = 0.1  # 雄性出生率
alpha = 0.2  # 雌性竞争和捕食影响系数
beta = 0.1   # 雄性竞争和捕食影响系数
gamma = 0.2  # 雄性竞争和捕食影响系数
delta = 0.1  # 雄性竞争和捕食影响系数
lambda_ = 0.05  # 食物的自然减少速率
mu = 0.02  # 外部的食物补给速率
eta1 = 0.1  # 雌性数量对性别比例的影响系数
eta2 = 0.1  # 雄性数量对性别比例的影响系数
eta3 = 0.1  # 食物供应对性别比例的影响系数

# 初值
F0 = 100  # 初始雌性数量
M0 = 100  # 初始雄性数量
S0 = 50   # 初始食物供应

# 模型函数
def model(y, t):
    F, M, S = y
    dFdt = r_F * F * (1 - alpha * F - beta * M)
    dMdt = r_M * M * (1 - gamma * F - delta * M)
    dSdt = -lambda_ * S + mu
    dSexRatiodt = eta1 * dFdt + eta2 * dMdt + eta3 * dSdt
    return [dFdt, dMdt, dSdt, dSexRatiodt]

# 求解ODE
t = np.linspace(0, 100, 1000)
y0 = [F0, M0, S0, M0 / (F0 + M0)]  # 初始条件包括性别比例
solution = odeint(model, y0, t)

# 提取结果
F = solution[:, 0]
M = solution[:, 1]
S = solution[:, 2]
SexRatio = solution[:, 3]

# 绘图
plt.figure(figsize=(10, 6))

plt.subplot(2, 1, 1)
plt.plot(t, F, 'b', label='雌性')
plt.plot(t, M, 'r', label='雄性')
plt.xlabel('时间')
plt.ylabel('数量')
plt.legend()
plt.title('灯鱼种群数量随时间变化')

plt.subplot(2, 1, 2)
plt.plot(t, SexRatio, 'g')
plt.xlabel('时间')
plt.ylabel('性别比例')
plt.title('性别比例随时间变化')

plt.tight_layout()
plt.show()

问题二:

涉及对灯笼鱼种群的利弊进行分析。为了深入研究这个问题,以下是一个数学建模的思路:


定义利弊指标: 首先,定义用于衡量灯笼鱼种群状况的利弊指标。这些指标可以包括种群的稳定性、生态系统的多样性、资源利用效率等。每个指标都可以用数学方程式来表示
生态系统动力学模型: 基于灯笼鱼与其他生物的相互作用,建立生态系统的动力学模型。这可能包括灯笼鱼与其食物、天敌以及其他相互作用物种之间的关系。这个模型将描述生态系统中各个组分的演化和相互作用。
利弊指标与生态系统模型关联: 将定义的利弊指标与生态系统模型中的各个变量联系起来。例如,种群的稳定性可以与灯笼鱼数量的方差或生态系统的总体稳定性有关。

模拟不同情景: 利用模型模拟不同的情景,例如改变灯笼鱼的繁殖率、食物供应的变化等。观察这些情景下生态系统中各个指标的变化,以便评估不同因素对种群的利弊影响

# 模型参数
r_L = 0.1  # 灯笼鱼出生率
r_F = 0.2  # 食物出生率
r_P = 0.15 # 天敌出生率
alpha_L = 0.1  # 灯笼鱼与食物的相互作用系数
beta_L = 0.05  # 灯笼鱼与天敌的相互作用系数
gamma_L = 0.1  # 灯笼鱼对食物的捕食效率
delta_L = 0.05 # 灯笼鱼对天敌的捕食效率

# 初始值
L0 = 50  # 初始灯笼鱼数量
F0 = 100 # 初始食物数量
P0 = 20  # 初始天敌数量

# 定义ODE系统
def odeSystem(y, t):
    L, F, P = y
    dLdt = r_L * L * (1 - alpha_L * L / F - beta_L * L / P)
    dFdt = r_F * F - gamma_L * L * F
    dPdt = r_P * P + delta_L * L * P
    return [dLdt, dFdt, dPdt]

# 求解ODE
t = np.linspace(0, 100, 1000)
y0 = [L0, F0, P0]
solution = odeint(odeSystem, y0, t)

# 提取结果
L = solution[:, 0]

# 计算种群稳定性指标(示例:方差)
variance = np.var(L

 问题三:

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint

# 模型参数
r_F = 0.1   # 雌性出生率
r_M = 0.1   # 雄性出生率
alpha_F = 0.2  # 雌性竞争和捕食影响系数
alpha_M = 0.2  # 雄性竞争和捕食影响系数
beta_P = 0.1   # 物种的出生率
gamma_P = 0.1  # 物种对雌性的捕食效率
delta_P = 0.1  # 物种对雄性的捕食效率

# 模型求解时间范围
t = np.linspace(0, 100, 1000)

# 初始值
F0 = 50  # 初始雌性数量
M0 = 50  # 初始雄性数量
P0 = 100 # 初始物种数量

# 定义ODE系统
def odeSystem(y, t):
    F, M, P = y
    dFdt = r_F * F * (1 - alpha_F * M/F)
    dMdt = r_M * M * (1 - alpha_M * F/M)
    dPdt = beta_P * P * (1 - gamma_P * F/P - delta_P * M/P)
    return [dFdt, dMdt, dPdt]

 问题四:

# 模型参数
r_F = 0.1   # 雌性出生率
r_M = 0.1   # 雄性出生率
alpha_F = 0.2  # 雌性竞争和捕食影响系数
alpha_M = 0.2  # 雄性竞争和捕食影响系数
alpha_S = 0.1  # 寄生虫出生率
beta_S0 = 0.05 # 基础寄生虫捕食率
K = 500       # 环境容纳量
gamma = 0.1   # 性别比例对寄生虫捕食率的调节系数

# 模型求解时间范围
t = np.linspace(0, 100, 1000)

# 初始值
F0 = 50  # 初始雌性数量
M0 = 50  # 初始雄性数量
S0 = 10  # 初始寄生虫数量

# 定义ODE系统
def odeSystem(y, t):
    F, M, S = y
    dFdt = r_F * F * (1 - alpha_F * M/F)
    dMdt = r_M * M * (1 - alpha_M * F/M)
    dSdt = alpha_S * S * (1 - (beta_S0 + gamma * (M/(F + M))) * (F + M)/K)
    return [dFdt, dMdt, dSdt]

# 求解ODE
solution = odeint(odeSystem, [F0, M0, S0], t)

# 提取结果
F = solution[:, 0]
M = solution[:, 1]
S = solution[:, 2]

# 计算性别比例
SexRatio = M / (F + M)

B题:寻找潜水器

问题一:
 

import numpy as np
import matplotlib.pyplot as plt

def submarine_simulation():
    # 潜水艇运动模拟
    
    # 初始参数设置
    m = 1000  # 潜水艇质量 (kg)
    
    # 初始条件
    x0, y0, z0 = 0, 0, 0  # 初始位置
    vx0, vy0, vz0 = 1, 1, 0.5  # 初始速度
    
    # 时间参数
    dt = 0.1  # 时间步长
    t = np.arange(0, 10, dt)  # 时间范围
    
    # 预分配数组
    num_steps = len(t)
    x = np.zeros(num_steps)
    y = np.zeros(num_steps)
    z = np.zeros(num_steps)
    vx = np.zeros(num_steps)
    vy = np.zeros(num_steps)
    vz = np.zeros(num_steps)
    
    # 数值模拟
    x[0], y[0], z[0] = x0, y0, z0
    vx[0], vy[0], vz[0] = vx0, vy0, vz0
    
    for i in range(1, num_steps):
        # 计算潜水艇在各个方向上的受力(这里简化为常数)
        Fx, Fy, Fz = 10, 5, 2
        
        # 计算加速度
        ax = Fx / m
        ay = Fy / m
        az = Fz / m

 问题二:

额外搜索设备的选择:
1、声纳系统:
数学模型: 建立声纳系统的数学模型,考虑其探测范围、灵敏度等因素。
成本考虑: 考虑购买、安装和维护声纳系统的成本。
2、水下摄像头和激光扫描仪:
数学模型: 考虑水下摄像头和激光扫描仪的视野范围和分辨率。
成本考虑: 估算购买、维护和运营这些设备的成本。
3、水下机器人:
数学模型: 考虑水下机器人的移动性、操控性和传感能力。
成本考虑: 估算购买和维护水下机器人的成本。
4、磁力探测器:
数学模型: 考虑磁力探测器在水下环境中检测金属物体的能力。
成本考虑: 估算购买和维护磁力探测器的成本。
5、自主水下车辆(AUV):
数学模型: 建立AUV的运动模型和传感器模型。
成本考虑: 估算购买、维护和运营AUV的成本。

 问题三:
 

 

潜水艇轨迹预测模型:
利用定位模型得到的潜水艇位置信息,建立潜水艇轨迹预测模型。这可能需要考虑水流、潮汐等环境因素。
搜索设备部署模型:
建立搜索设备的部署模型,确定每个搜索设备的初始部署点和搜索模式。考虑搜救船舶的速度,设备的搜索效率以及搜索范围。
搜救时间模型:
建立搜救时间模型,考虑不同设备的效率、搜救船舶的速度以及潜水艇可能的位置。该模型应该能够计算在给定的时间内找到潜水艇的概率。
搜救概率模型:
根据不同设备的搜索效率和搜救船舶的速度,建立搜救概率模型。该模型应该能够随着时间的推移更新搜救概率。
优化和决策:
多目标优化:
利用多目标优化算法,将搜救时间和搜救概率作为目标函数,优化搜索设备的部署方案。
实时调整策略:
在实时监测到搜救进展的情况下,动态调整搜索设备的部署,以最大化找到潜水艇的概率。
不确定性处理:
考虑搜救过程中的不确定性,例如环境变化、搜索设备故障等,建立鲁棒的优化模型。

# 潜水艇轨迹预测模型
def submarine_trajectory(t, state):
    # 简化的动力学模型,需要根据实际情况修改
    x, y, z, vx, vy, vz = state
    dxdt = vx
    dydt = vy
    dzdt = vz
    dvxdt = f_x(x, y, z, t)
    dvydt = f_y(x, y, z, t)
    dvzdt = f_z(x, y, z, t)
    return [dxdt, dydt, dzdt, dvxdt, dvydt, dvzdt]

# 搜救设备部署模型
def search_device_motion(t, position, v_s, epsilon_i, theta_i):
    # 简化的搜索设备运动模型,需要根据实际情况修改
    dxdt = v_s * epsilon_i * np.cos(theta_i)
    dydt = v_s * epsilon_i * np.sin(theta_i)
    dzdt = 0
    return [dxdt, dydt, dzdt]

# 搜救时间模型
def rescue_time_model(T, search_device_positions, submarine_trajectory):
    # 计算在给定时间内找到潜水艇的概率
    P_T = 1
    for position in search_device_positions:
        P_i_T = search_device_detection_probability(T, position, submarine_trajectory)
        P_T *= P_i_T
    return 1 - P_T

# 搜救概率模型
def update_rescue_probability(previous_probability, search_device_detection_probability):
    # 贝叶斯更新搜救概率
    updated_probability = previous_probability * search_device_detection_probability
    updated_probability /= np.sum(updated_probability)
    return updated_probability

 问题四:
 

 

import numpy as np
from scipy.integrate import odeint

# 多目标轨迹预测模型
def multi_submarine_trajectory(states, t):
    # 具体的动力学模型,根据目标个数修改
    num_targets = len(states) // 6
    dx = np.zeros_like(states)
    for i in range(num_targets):
        idx = slice(i*6, (i+1)*6)
        dx[idx] = submarine_trajectory(states[idx], t)
    return dx

# 多目标搜索设备部署模型
def multi_search_device_motion(positions, t, v_s, epsilon, u):
    # 具体的搜索设备运动模型,根据目标个数修改
    num_targets = len(positions) // 3
    dp = np.zeros_like(positions)
    for i in range(num_targets):
        idx = slice(i*3, (i+1)*3)
        dp[idx] = search_device_motion(positions[idx], t, v_s, epsilon, u[:, i])
    return dp

# 多目标搜救时间模型
def multi_rescue_time_model(T, search_device_positions, multi_submarine_trajectory):
    # 计算在给定时间内找到潜水艇的概率,根据目标个数修改
    num_targets = len(search_device_positions) // 3
    P_T = 1
    for i in range(num_targets):
        idx = slice(i*3, (i+1)*3)
        P_i_T = search_device_detection_probability(T, search_device_positions[idx], multi_submarine_trajectory[idx])
        P_T *= P_i_T
    P_T = 1 - P_T
    return P_T

# 多目标搜救概率模型
def multi_update_rescue_probability(previous_probability, search_device_detection_probability):
    # 贝叶斯更新搜救概率,根据目标个数修改
    num_targets = len(previous_probability)
    updated_probability = previous_probability * search_device_detection_probability
    updated_probability /= np.sum(updated_probability)
    return updated_probability

# 示例的搜索设备检测概率模型
def search_device_detection_probability(T, position, submarine_trajectory):
    # 简化的检测概率模型,需要根据实际情况修改
    # 假设设备在时间 T 内能够探测到潜水艇
    return 0.8

 后续就简单展示一下啦!

C题: 网球运动中的动力

D题: 五大湖水问题

E题:财产保险的可持续性

F题:减少非法野生动植物贸易

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1429710.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

爬虫入门到精通_基础篇4(BeautifulSoup库_解析库,基本使用,标签选择器,标准选择器,CSS选择器)

1 Beautiful说明 BeautifulSoup库是灵活又方便的网页解析库,处理高效,支持多种解析器。利用它不用编写正则表达式即可方便地实线网页信息的提取。 安装 pip3 install beautifulsoup4解析库 解析器使用方法优势劣势Python标准库BeautifulSoup(markup,…

Session与Cookie、部署redis、redis基本操作、Session共享

1 案例1:PHP的本地Session信息 1.1 问题 通过Nginx调度器负载后端两台Web服务器,实现以下目标: 部署Nginx为前台调度服务器调度算法设置为轮询后端为两台LNMP服务器部署测试页面,查看PHP本地的Session信息 1.2 方案 实验拓扑…

亚马逊新店铺视频怎么上传?视频验证失败怎么办?——站斧浏览器

亚马逊新店铺视频怎么上传? 登录亚马逊卖家中心:首先,卖家需要登录亚马逊卖家中心。在登录后,可以点击左侧导航栏上的“库存”选项,然后选择“新增或管理商品”。 选择商品:接下来,在“新增或…

如何部署Node.js服务并实现无公网ip远程访问本地项目【内网穿透】

文章目录 前言1.安装Node.js环境2.创建node.js服务3. 访问node.js 服务4.内网穿透4.1 安装配置cpolar内网穿透4.2 创建隧道映射本地端口 5.固定公网地址 前言 Node.js 是能够在服务器端运行 JavaScript 的开放源代码、跨平台运行环境。Node.js 由 OpenJS Foundation&#xff0…

YOLOv8进阶 | 如何用yolov8训练自己的数据集(以安全帽佩戴检测举例)

前言:Hello大家好,我是小哥谈。YOLOv8是一种目标检测算法,它是YOLO(You Only Look Once)系列算法的最新版本。本节课就带领大家如何基于YOLOv8来训练自己的目标检测模型,本次作者就以安全帽佩戴检测为案例进…

二叉树的最小深度

给定一个二叉树,找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明:叶子节点是指没有子节点的节点。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:2示例 2: 输入&…

postgres:锁申请

什么是弱锁,强锁? 为了提高并发控制,PG通过将锁信息在本地缓存(**LOCALLOCK**)和快速处理常见锁(fastpath),减少了对共享内存的访问,提高性能。从而出现了弱锁和强锁的概…

如何在win系统部署开源云图床Qchan并无公网ip访问本地存储图片

文章目录 前言1. Qchan网站搭建1.1 Qchan下载和安装1.2 Qchan网页测试1.3 cpolar的安装和注册 2. 本地网页发布2.1 Cpolar云端设置2.2 Cpolar本地设置 3. 公网访问测试总结 前言 图床作为云存储的一项重要应用场景,在大量开发人员的努力下,已经开发出大…

【自然语言处理】P2 PyTorch 基础 - 张量

目录 安装 PyTorch张量创建张量操作张量索引、切片、联合操作 CUDA张量 本系列博文我们将使用 PyTorch 来实现深度学习模型等。PyTorch 是一个开源的、社区驱动的深度学习框架。拥有强大的工具和库生态系统,包含 TorchVision(用于图像处理)、…

后端软件三层架构

一、三层架构简介 三层架构是软件开发中广泛采用的一种经典架构模式,其核心价值在于通过清晰的任务划分来提高代码的可维护性和重用性。具体来说,三层架构主要包括以下三个层次: 持久层(DAO层):这一层主要…

和鲸科技与智谱AI达成合作,共建大模型生态基座

近日,上海和今信息科技有限公司(简称“和鲸科技”)与北京智谱华章科技有限公司(简称“智谱AI”)签订合作协议,双方将携手推动国产通用大模型的广泛应用与行业渗透,并积极赋能行业伙伴探索领域大…

10:00进去,10:06就出来了,面试问的问题真难。。。

🍅 视频学习:文末有免费的配套视频可观看 🍅 关注公众号【互联网杂货铺】,回复 1 ,免费获取软件测试全套资料,资料在手,涨薪更快 刚从小厂出来,没想到在另一家公司我又寄了。 在这家…

在线JSON转CSV工具

在线JSON转CSV - BTool在线工具软件,为开发者提供方便。本工具可以在浏览器本地将JSON转换成CSV文件,并下载转换后的CSV文件。https://www.btool.cn/json-to-csv 在大数据时代,数据处理与交换已经成为日常工作生活中的常态。而JSON和CSV作为两种广…

Go语言的100个错误使用场景(21-29)|数据类型

前言 大家好,这里是白泽。 《Go语言的100个错误以及如何避免》 是最近朋友推荐我阅读的书籍,我初步浏览之后,大为惊喜。就像这书中第一章的标题说到的:“Go: Simple to learn but hard to master”,整本书通过分析100…

Flutter向 开发人员需要了解的和颜色有关的知识

前言 构建应用前台的开发人员常常需要和颜色打交道,即使很多时候,前台人员不用自己设计颜色,而是由设计师给出颜色,不过经常和颜色打交道,整理和颜色有关的知识还是开卷有益的 flutter中指定颜色的常用方式 Color.f…

海外IP代理:解锁网络边界的实战利器

文章目录 引言:正文:一、Roxlabs全球IP代理服务概览特点:覆盖范围:住宅IP真实性:性价比:在网络数据采集中的重要性: 二、实战应用案例一:跨境电商竞品分析步骤介绍:代码示…

vscode的ssh忽然连不上服务器:远程主机可能不符合glibc和libstdc++ VS Code服务器的先决条件

vscode自动更新了一下就发现连不上服务器了,我寻思估计一大堆人都寄了,一搜,果然哈哈哈哈 然后我直接搜一天内新发布的博客,还真给我搜到了这个问题,按照这个问题里面的回答(vscode1.86无法远程连接waitin…

Notion 开源替代品:兼容 Miro 绘图 | 开源日报 No.162

toeverything/AFFiNE Stars: 25.6k License: NOASSERTION AFFiNE 是下一代知识库,将规划、排序和创建集于一身。它是一个注重隐私、开源、可定制且即插即用的替代方案,可以与 Notion 和 Miro 相媲美。主要功能和优势包括: 超融合&#xff1…

深入理解网络编程之BIO和NIO

目录 原生JDK网络编程BIO BIO通信模型服务端代码 BIO通信模型客户端代码 伪异步模型服务端代码(客户端跟之前一致) 原生JDK网络编程NIO 什么是NIO? NIO和BIO的主要区别 阻塞与非阻塞IO NIO之Reactor模式 NIO中Reactor模式的基本组成…

Vue 上门取件时间组件

本文使用vue2.0elementui 制作一个上门取件时间组件,类似顺丰,样式如下: 大概功能:点击期望上门时间,下面出现一个弹框可以选择时间: 首先我们定义一些需要的数据: data() {return {isDropdown…