回归预测 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多输入单输出回归预测

news2025/1/12 16:08:26

回归预测 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多输入单输出回归预测

目录

    • 回归预测 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多输入单输出回归预测
      • 预测效果
      • 基本描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多输入单输出回归预测(完整源码和数据)
2.SSA选择最佳的SVM核函数参数c和g;
3.多特征输入单输出的回归预测。程序内注释详细,excel数据,直接替换数据就可以用。
4.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图,运行环境matlab2020b及以上。评价指标包括:R2、RPD、MSE、RMSE、MAE、MAPE等。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式资源处下载Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多输入单输出回归预测。
%%  参数设置
%%  优化算法
[Best_score,Best_pos, curve] = SSA(pop, Max_iteration, lb, ub, dim, fun); 

%%  获取最优参数
bestc = Best_pos(1, 1);  
bestg = Best_pos(1, 2); 

%%  建立模型
cmd = [' -t 2 ', ' -c ', num2str(bestc), ' -g ', num2str(bestg), ' -s 3 -p 0.01 '];
model = svmtrain(t_train, p_train, cmd);

%%  仿真预测
[t_sim1, error_1] = svmpredict(t_train, p_train, model);
[t_sim2, error_2] = svmpredict(t_test , p_test , model);

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
T_sim1 =T_sim1';
T_sim2 =T_sim2';
%%  适应度曲线
figure;
plot(1 : length(curve), curve, 'LineWidth', 1.5);
title('适应度曲线', 'FontSize', 13);
xlabel('迭代次数', 'FontSize', 13);
ylabel('适应度值', 'FontSize', 13);
grid
set(gcf,'color','w')

%%  相关指标计算
%%  均方根误差
toc
%% 测试集结果
figure;
plotregression(T_test,T_sim2,['回归图']);
set(gcf,'color','w')
figure;
ploterrhist(T_test-T_sim2,['误差直方图']);
set(gcf,'color','w')
%%  均方根误差 RMSE
error1 = sqrt(sum((T_sim1 - T_train).^2)./M);
error2 = sqrt(sum((T_test - T_sim2).^2)./N);

%%
%决定系数
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

%%
%均方误差 MSE
mse1 = sum((T_sim1 - T_train).^2)./M;
mse2 = sum((T_sim2 - T_test).^2)./N;
%%
%RPD 剩余预测残差
SE1=std(T_sim1-T_train);
RPD1=std(T_train)/SE1;

SE=std(T_sim2-T_test);
RPD2=std(T_test)/SE;
%% 平均绝对误差MAE
MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1411677.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

解密:消息中间件的选择与使用:打造高效通信枢纽

目录 第一章:消息中间件介绍 1.1 什么是消息中间件 1.2 消息中间件的作用 1.3 消息中间件的分类 第二章:消息中间件的选择标准 2.1 性能 2.2 可靠性 2.3 可扩展性 2.4 易用性 2.5 社区支持 2.6 成本 第三章:常见的消息中间件对比…

docker 网络及如何资源(CPU/内存/磁盘)控制

安装Docker时,它会自动创建三个网络,bridge(创建容器默认连接到此网络)、 none 、host docker网络模式 Host 容器与宿主机共享网络namespace,即容器和宿主机使用同一个IP、端口范围(容器与宿主机或其他使…

[ACM学习] 进制转换

进制的本质 本质是每一位的数位上的数字乘上这一位的权重 将任意进制转换为十进制 原来还很疑惑为什么从高位开始,原来从高位开始的,可以被滚动地乘很多遍。 将十进制转换为任意进制

VsCode提高生产力的插件推荐-持续更新中

别名路径跳转 自定义配置// 文件名别名跳转 "alias-skip.mappings": { "~/": "/src", "views": "/src/views", "assets": "/src/assets", "network": "/src/network", "comm…

CNN卷积理解

1 卷积的步骤 1 过滤器(卷积核)(Filter或Kernel): 卷积层使用一组可学习的过滤器来扫描输入数据(通常是图像)。每个过滤器都是一个小的窗口,包含一些权重,这些权重通过训…

Supervised Contrastive 损失函数详解

有什么不对的及时指出,共同学习进步。(●’◡’●) 有监督对比学习将自监督批量对比方法扩展到完全监督设置,能够有效地利用标签信息。属于同一类的点簇在嵌入空间中被拉到一起,同时将来自不同类的样本簇推开。这种损失显示出对自然损坏很稳…

支付宝AES如何加密

继之前给大家介绍了 V3 加密解密的方法之后,今天给大家介绍下支付宝的 AES 加密。 注意:以下说明均在使用支付宝 SDK 集成的基础上,未使用支付宝 SDK 的小伙伴要使用的话老老实实从 AES 加密原理开始研究吧。 什么是AES密钥 AES 是一种高级加…

k8s实例

k8s实例举例 (1)Kubernetes 区域可采用 Kubeadm 方式进行安装。 (2)要求在 Kubernetes 环境中,通过yaml文件的方式,创建2个Nginx Pod分别放置在两个不同的节点上,Pod使用动态PV类型的存储卷挂载…

虚幻UE 插件-像素流送实现和优化

本笔记记录了像素流送插件的实现和优化过程。 UE version:5.3 文章目录 一、像素流送二、实现步骤1、开启像素流送插件2、设置参数3、打包程序4、打包后的程序进行像素流参数设置5、下载NodeJS6、下载信令服务器7、对信令服务器进行设置8、启动像素流送 三、优化1、…

路飞项目--03

总页面 二次封装Response模块 # drf提供的Response,前端想接收到的格式 {code:xx,msg:xx} 后端返回,前端收到: APIResponse(tokneasdfa.asdfas.asdf)---->{code:100,msg:成功,token:asdfa.asdfas.asdf} APIResponse(code101,msg用户不存…

数据结构排序算详解(动态图+代码描述)

目录 1、直接插入排序(升序) 2、希尔排序(升序) 3、选择排序(升序) 方式一(一个指针) 方式二(两个指针) 4、堆排序(升序) 5、冒…

精酿啤酒:啤酒花的选择与处理方法

啤酒花在啤酒的酿造过程中起着重要的作用,它不仅赋予啤酒与众不同的苦味和香味,还为啤酒的稳定性提供了帮助。对于Fendi Club啤酒来说,啤酒花的选择和处理方法更是重要。下面,我们将深入探讨Fendi Club啤酒在啤酒花的选择和处理方…

一文详解C++拷贝构造函数

文章目录 引入一、什么是拷贝构造函数?二、什么情况下使用拷贝构造函数?三、使用拷贝构造函数需要注意什么?四、深拷贝和浅拷贝浅拷贝深拷贝 引入 在现实生活中,可能存在一个与你一样的自己,我们称其为双胞胎。 相当…

【并发编程】 synchronized的普通方法,静态方法,锁对象,锁升级过程,可重入锁,非公平锁

目录 1.普通方法 2.静态方法 3.锁对象 4.锁升级过程 5.可重入的锁 6.不公平锁 非公平锁的 lock 方法: 1.普通方法 将synchronized修饰在普通同步方法,那么该锁的作用域是在当前实例对象范围内,也就是说对于 SyncDemosdnewSyncDemo();这一个实例对象…

el-table 动态渲染多级表头;一级表头根据数据动态生成,二级表头固定

一、表格需求: 实现一个动态表头,一级表头,根据数据动态生成,二级表头固定,每列的数据不一样,难点在于数据的处理。做这种表头需要两组数据,一组数据是实现表头的,另一组数据是内容…

【洛谷】P1135奇怪的电梯(DFS)

这题利用 dfs 解决,编程实现比较简单。 具体来说,每层楼有两种可能,上楼或下楼,因此可以形成一个以 a 楼为根的二叉树,因此只需一个 for 循环遍历某个父节点的两个子节点,之后递归就行。 易错点&#xff…

马尔可夫预测(Python)

马尔科夫链(Markov Chains) 从一个例子入手:假设某餐厅有A,B,C三种套餐供应,每天只会是这三种中的一种,而具体是哪一种,仅取决于昨天供应的哪一种,换言之&#…

灰度转换及修改尺寸

文章目录 主要内容一.OpenCVPycharm1.读取图片及灰度转换代码如下(示例): 2.修改尺寸代码如下(示例): 总结 主要内容 读取图片及灰度转换修改尺寸 一.OpenCVPycharm 1.读取图片及灰度转换 代码如下(示例&#xff09…

C++ 程序使用 OpenCV 生成两个黑色的灰度图像,并添加随机特征点,然后将这两个图像合并为一张图像并显示

文章目录 源码文件功能解读编译文件 源码文件 #include <iostream> #include <vector> #include <opencv2/opencv.hpp>std::vector<cv::KeyPoint> generateRandomKeyPoints(const cv::Mat& image, int numPoints) {std::vector<cv::KeyPoint&g…

Flume1.9基础学习

文章目录 一、Flume 入门概述1、概述2、Flume 基础架构2.1 Agent2.2 Source2.3 Sink2.4 Channel2.5 Event 3、Flume 安装部署3.1 安装地址3.2 安装部署 二、Flume 入门案例1、监控端口数据官方案例1.1 概述1.2 实现步骤 2、实时监控单个追加文件2.1 概述2.2 实现步骤 3、实时监…