list的介绍及其模拟实现

news2025/1/12 6:44:21

今天我们了解list,list在python中是列表的意思 ,但是在C++中它是一个带头双向循环链表:

list的介绍
  1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
  2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。
  3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。
  4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。
  5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)
list的模拟实现

有了前面的string和vector的模拟实现,我们的list的模拟实现算是轻车熟路了,我们要想模拟实现list就需要了解list在库里面的源码,我们用everything查找一下
在这里插入图片描述
在这里插入图片描述
可以看到,在list的类里面成员参数只有一个,但是这个参数是此前定义的一个结构体,它包含了,next,prev和当前节点存储的data,所以我们同样需要去自定义一个结构体

我们首先把定义一个结构体,就是list的节点的结构,同时在里面定义一个构造新节点的函数:

template <class T>
struct list_node
{
	T _data;
	list_node<T>* _prev;
	list_node<T>* _next;

	list_node(const T& x = T())
		:_data(x)
		, _prev(nullptr)
		, _next(nullptr)
	{}
};

然后我们就可以在命名空间内定义list类了:
为了可读性和代码的简洁,我就用Node来作为list_node的重命名了

namespace jh
{
	template <class T>
	struct list_node
	{
		T _data;
		list_node* _prev;
		list_node* _next;

		list_node(const T& x = T())
			:_data(x)
			, _prev(nullptr)
			, _next(nullptr)
		{}
	};
	template <class T>
	class list
	{
		
		typedef list_node<T> Node;
	private:
		Node* _head;
		size_t _size;
	};
}

我们首先就拿下最难啃的一块骨头:

迭代器

我们再次查看list的源码就会发现:
迭代器同样地使用了一个结构体来构造,所以这里我们也采用结构体
在这里插入图片描述
我们先整体地构造一个框架:
至于模块的地方为什么有多个参数我稍后做讲解,这是一个很重要的点
迭代器就是一个节点,我们同时定义一个拷贝构造的函数

	template <class T,class Ref,class Ptr>
	struct __list_iterator
	{
		typedef list_node<T> Node;
		typedef __list_iterator<T,Ref,Ptr> self;
		Node* _node;
		__list_iterator(Node* node)
			:_node(node)
		{}
	};

++和–的重载:
迭代器最常用的点就是++和–,因为我们需要用迭代器来初始化等等,我们就首先在结构体内重载++和–:
括号后面又int的我们之前的博客也进行学习过,它是后置,编译器会自动识别的,temp就是一个匿名参数,他的生命周期只有一行,这里的->运算符我们之后也要做重载,不然不能用
这里还有一个需要注意的点:
前置是返回对象本身,所以用引用返回减少拷贝,但是后置返回的是对象temp临时变量,是一个常量,不能用引用

self& operator++()
{
	_node = _node->_next;
	return *this;
}
self& opetrator--()
{
	_node = _node->prev;
	return *this;
}
self operator++(int)
{
	self temp(*this);
	_node = _node->next;
	return temp;
}
self operator--(int)
{
	self temp(*this);
	_node = _node->prev;
	return temp;
}

*和->的重载:
*是解引用,就是返回迭代器所存储的数据,返回data就是
—>操作符前的是一个地址,所以就取地址就可以了,这里的Ref和Ptr就派上用场了

Ref operator*()
{
	return _node->_data;
}

Ptr operator->()
{
	return &_node->data;
}

!=和==操作符重载:
这里用bool类型就可以了,直接返回它们之间的关系即可

bool operator!=(const self& s)
{
	return _node != s._node;
}

bool operator==(const self& s)
{
	return _node == s._node;
}

迭代器就完成了:
增加Ref和Ptr的作用就是为了随时适应,例如需要const T或者const T*这种,这样就省去了const迭代器的代码,更加简洁了,这是迭代器的妙处之一!

	template <class T,class Ref,class Ptr>
	struct __list_iterator
	{
		typedef list_node<T> Node;
		typedef __list_iterator<T,Ref,Ptr> self;

		Node* _node;

		__list_iterator(Node* node)
			:_node(node)
		{}

		self& operator++()
		{
			_node = _node->_next;
			return *this;
		}
		self& operator--()
		{
			_node = _node->prev;
			return *this;
		}
		self operator++(int)
		{
			self temp(*this);
			_node = _node->next;
			return temp;
		}
		self operator--(int)
		{
			self temp(*this);
			_node = _node->prev;
			return temp;
		}

		Ref operator*()
		{
			return _node->_data;
		}

		Ptr operator->()
		{
			return &_node->data;
		}

		bool operator!=(const self& s)
		{
			return _node != s._node;
		}

		bool operator==(const self& s)
		{
			return _node == s._node;
		}

	};

迭代器解决后我们就可以将其应用到list类里了:
这里大家记住:
begin就是头节点head的下一个节点
end就是head节点

const_iterator begin() const
{
	return const_iterator(_head->_next);
}
const_iterator end() const
{
	return const_iterator(_head);
}
iterator begin()
{
	return iterator(_head->_next);
}
iterator end()
{
	return iterator(_head);
}
构造函数

构造函数我们必须有一个头节点head,同时我们要知道当list为空时,head的next和prev都是head本身

void empty_init()
{
	_head = new Node;
	_head->_next = _head;
	_head->_prev = _head;
}

list()
{
	empty_init();
}
insert函数

insert函数要做的就是首先构造一个新的节点,然后插入,插入很简单,我们在数据结构中学过,这里不做过多的讲解:
记住最后要返回插入的那个新节点!

iterator insert(iterator pos, const T& x = T())
{
	Node* cur = pos._node;
	Node* newnode = new Node(x);
	Node* prev = cur->_prev;
	prev->_next = newnode;
	newnode->_next = cur;
	cur->_prev = newnode;
	newnode->_prev = prev;
	return iterator(newnode);
}
erase函数

erase函数同样地也是用数据结构的知识来操作,但是erase函数返回的是删除pos位置的下一个位置的迭代器:

iterator erase(iterator pos)
{
	Node* cur = pos._node;
	Node* prev = cur->_prev;
	Node* next = cur->_next;
	delete cur;
	prev->_next = next;
	next->_prev = prev;
	return iterator(next);
}
尾删和头删,尾插和头插

这些我们在有了解决了erase和insert之后可以直接复用了:

void push_back(const T& x)
{
	insert(end(), x);
}
void push_front(const T& x)
{
	insert(begin(), x);
}
void pop_back()
{
	erase(end());
}
void pop_front()
{
	erase(begin());
}
拷贝构造函数

拷贝构造函数我们依旧用pushback和语法糖来实现:
逐一将lt中的元素尾插进入即可

list(const list<t>T& lt)
{
	empty_init();
	for (auto e : lt)
	{
		push_back(e);
	}
}
赋值操作符重载

赋值操作符重载我们用swap解决,直接调用std库里的swap函数即可:

void swap(list<T>& lt)
{
	std::swap(_head, lt._head);
}
list<T>& operator=(list<T> lt)
{
	swap(lt);
	return *this;
}
析构函数

我们先定义一个clear函数用于清理空间,然后复用,记住将head节点释放:

void clear()
{
	iterator it = begin();
	while (it != end())
	{
		it = erase(it);//erase每次返回的都是it的next,故可以这样写
	}
}
~list()
{
	clear();
	delete _head;
	_head = nullptr;
}

到这里,list的模拟实现差不多就结束了,感谢大家的支持!

完整代码如下:

using namespace std;
namespace jh
{
	template <class T>
	struct list_node
	{
		T _data;
		list_node<T>* _prev;
		list_node<T>* _next;

		list_node(const T& x = T())
			:_data(x)
			, _prev(nullptr)
			, _next(nullptr)
		{}
	};

	template<class T, class Ref, class Ptr>
	struct __list_iterator
	{
		typedef list_node<T> Node;
		typedef __list_iterator<T, Ref, Ptr> self;

		Node* _node;

		__list_iterator(Node* node)
			:_node(node)
		{}

		self& operator++()
		{
			_node = _node->_next;
			return *this;
		}
		self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}
		self operator++(int)
		{
			self temp(*this);
			_node = _node->_next;
			return temp;
		}
		self operator--(int)
		{
			self temp(*this);
			_node = _node->_prev;
			return temp;
		}

		Ref operator*()
		{
			return _node->_data;
		}

		Ptr operator->()
		{
			return &_node->_data;
		}

		bool operator!=(const self& s)
		{
			return _node != s._node;
		}

		bool operator==(const self& s)
		{
			return _node == s._node;
		}
	};

	template <class T>
	class list
	{
		typedef list_node<T> Node;
	public:
		typedef __list_iterator<T, const T&, const T*> iterator;
		typedef __list_iterator<T, const T&, const T*> const_iterator;

		const_iterator begin() const
		{
			return const_iterator(_head->_next);
		}
		const_iterator end() const
		{
			return const_iterator(_head);
		}
		iterator begin()
		{
			return iterator(_head->_next);
		}
		iterator end()
		{
			return iterator(_head);
		}

		void empty_init()
		{
			_head = new Node;
			_head->_next = _head;
			_head->_prev = _head;
		}

		list()
		{
			empty_init();
		}

		iterator insert(iterator pos, const T& x = T())
		{
			Node* cur = pos._node;
			Node* newnode = new Node(x);
			Node* prev = cur->_prev;
			prev->_next = newnode;
			newnode->_next = cur;
			cur->_prev = newnode;
			newnode->_prev = prev;
			return iterator(newnode);
		}

		iterator erase(iterator pos)
		{
			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* next = cur->_next;
			delete cur;
			prev->_next = next;
			next->_prev = prev;
			return iterator(next);
		}
		
		void push_back(const T& x)
		{
			insert(end(), x);
		}
		void push_front(const T& x)
		{
			insert(begin(), x);
		}
		void pop_back()
		{
			erase(end());
		}
		void pop_front()
		{
			erase(begin());
		}

		list(const list<T>& lt)
		{
			empty_init();
			for (auto e : lt)
			{
				push_back(e);
			}
		}

		void swap(list<T>& lt)
		{
			std::swap(_head, lt._head);
		}
		list<int>& operator=(list<int> lt)
		{
			swap(lt);
			return *this;
		}

		void clear()
		{
			iterator it = begin();
			while (it != end())
			{
				it = erase(it);
			}
		}
		~list()
		{
			clear();
			delete _head;
			_head = nullptr;
		}

	private:
		Node* _head;
		size_t _size;
	};
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1410543.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

1.25学习总结

今天学习了二叉树&#xff0c;了解了二叉树的创建和遍历的过程 今天所了解的遍历过程主要分为三种&#xff0c;前序中序和后序&#xff0c;都是DFS的想法 前序遍历&#xff1a;先输出在遍历左节点和右节点&#xff08;输出->左->右&#xff09; 中序遍历&#xff1a;先…

2024传薪文化盛大启航 年度论坛暨新春年会圆满举办

2024年1月20日下午, 由创人文/传薪文化理事会与长三角美好生活创新联盟主办,由传薪文化、九鲲文化承办的“文脉传万象薪”传薪&美创联2024甲辰年度论坛暨新春年会,在上海成功举办。来自学界、文化、经济和艺术等领域的社会精英人士170余人齐聚一堂,从历史和传承中汲取营养,…

elementplus 中 DatePicker 日期选择器样式修改无效

问题 遇到一个需求需要修改 DatePicker 日期选择器的样式&#xff0c;在添加了 scoped 属性的 style 标签&#xff0c;并且使用了 deep 样式穿透的情况下并不能修改其样式。 原因 DatePicker 日期选择器弹出面板默认挂载在 body 上&#xff0c;所以在组件中添加了 scoped 属…

MFC扩展库BCGControlBar Pro v34.0 - 图形管理器功能升级

BCGControlBar库拥有500多个经过全面设计、测试和充分记录的MFC扩展类。 我们的组件可以轻松地集成到您的应用程序中&#xff0c;并为您节省数百个开发和调试时间。 BCGControlBar专业版 v34.0已正式发布了&#xff0c;该版本包括新的主题任务对话框、图像效果、旋转圆形刻度、…

【操作系统】实验六 分析源代码

&#x1f57a;作者&#xff1a; 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux &#x1f618;欢迎关注&#xff1a;&#x1f44d;点赞&#x1f64c;收藏✍️留言 &#x1f3c7;码字不易&#xff0c;你的&#x1f44d;点赞&#x1f64c;收藏❤️关注对我真的很重要&…

Python爬虫 l 中国农药信息网的农药登记数据

一、爬取目标 二、完整源码 #""""""""""""""""""""""""""""""""""""""…

Docker网络及资源控制

目录 1.Docker网络 Docker网络实现原理 Docker的网络模式 host模式 container模式 none模式 bridge模式 自定义网络 2.资源控制 CPU资源控制 设置CPU使用率上限 设置CPU资源占用比 设置容器绑定指定的CPU 对内存使用的限制 对磁盘IO配额控制&#xff08;blkio&a…

泰迪科技最新大数据法律监督模型解决方案

大数据法律监督平台是基于监督数据整合管理平台、监督模型构建平台、内置模型库以及法律监督线索管理平台打造的一套服务于检察机关法律监督工作的专业化系统。通过数据采集、融合、挖掘、建模、展现等一系列能力&#xff0c;辅助检察官从纷繁复杂的数据中&#xff0c;开展多维…

手拉手JavaFX UI控件与springboot3+FX桌面开发

目录 javaFx文本 javaFX颜色 字体 Label标签 Button按钮 //按钮单击事件 鼠标、键盘事件 //(鼠标)双击事件 //键盘事件 单选按钮RadioButton 快捷键、键盘事件 CheckBox复选框 ChoiceBox选择框 Text文本 TextField(输入框)、TextArea文本域 //过滤 (传入一个参数&a…

【嵌入式学习】C++QT-Day1-C++基础

思维导图&&笔记 见我的博客&#xff1a;https://lingjun.life/wiki/EmbeddedNote/19Cpp 作业&#xff1a; 提示并输入一个字符串&#xff0c;统计该字符中大写、小写字母个数、数字个数、空格个数以及其他字符个数 要求使用C风格字符串完成 #include <iostream&…

【K8S】Service使用NodePort对外暴露应用

一、背景介绍 Pod是有生命周期的&#xff0c;当一个工作节点(node)销毁时&#xff0c;节点上运行的pods也会被销毁。ReplicationController会动态地在其他节点上创建Pod来保持应用程序的运行&#xff0c;每一个Pod都有一个独立的IP地址&#xff0c;甚至是同一个节点上的Pod。可…

软件安装SQLyog

SQLyog 安装配置使用 首先下载SQLyog 软件&#xff0c;并解压 选择自己操作系统的版本 双击点击 .exe 文件&#xff0c;进行安装 选择安装语言&#xff0c;默认中文&#xff0c;直接点击【OK】即可 点击【下一步】 先【勾选】同意协议&#xff0c;再点击【下一步】 …

男主角展现炸裂演技,演绎方式独具匠心,令人叹为观止

♥ 为方便您进行讨论和分享&#xff0c;同时也为能带给您不一样的参与感。请您在阅读本文之前&#xff0c;点击一下“关注”&#xff0c;非常感谢您的支持&#xff01; 文 |猴哥聊娱乐 编 辑|徐 婷 校 对|侯欢庭 在漫长的等待之后&#xff0c;《要久久爱》这部都市情感剧终…

图中点的层次——树与图的广度优先遍历

问题描述 代码实现 #include <cstring> #include <iostream> #include <algorithm>using namespace std;const int N 1e5 10;int n, m; int h[N], ne[N * 2], e[N * 2], idx; int d[N]; // 从节点1到当前节点的距离 int q[N * 2]; // 数组模拟队列void ad…

西安石油大学C++上机实验汇总

考试题难度就像第三章第五章课后题的难度 基础知识一定要掌握&#xff01;&#xff01;&#xff01; 上机一&#xff1a;类与对象程序设计&#xff08;2 学时&#xff09; 上机目的 掌握声明类的方法。掌握类和类的成员的概念以及定义对象的方法。掌握构造函数和析构函数的…

Salesforce Lightning 的 Close Case 按钮无法批量关闭 Case 的原因和解决方法

为 Lightning 页面添加了自定义的 Close Case 按钮&#xff08;方法可参考&#xff1a;https://www.simplysfdc.com/2021/01/salesforce-mass-close-case.html&#xff09;后&#xff0c;可能会出现无法批量关闭 Case 的情况。 选中多个 Case&#xff0c;再点击 Close Case 按…

微信小程序开发position等于static、relative、absolute、fixed、stricky时元素显示详细介绍

No Position 不设置position时显示,以红色元素做测试: Static 元素根据界面正常流进行定位。top、right、bottom、left 和 z-index 属性不起作用。这是默认值。 红色元素设置position: static,显示如下: Relative 元素根据界面正常流进行定位。以元素当前位置为基准,根…

C语言和C++中不定参数解析

你所看到的惊艳&#xff0c;都曾被平庸历练 文章目录 简介C语言不定参数不定参宏函数 C不定参数方法一&#xff1a;递归展开方式二&#xff1a;折叠表达式方法三&#xff1a;逗号表达式 总结 简介 相信学过c/c的佬们都知道&#xff0c;如果一个函数将自己的参数确定好后&#…

泛微智能公文,为党政机关配备一位7*24小时公文助手,办文更高效

政务数字化智能水平明显提升是数字中国建设目标之一&#xff0c;平台化、智能化已成为政务协同办公的未来发展趋势&#xff0c;政府机关持续加强新技术全流程应用。 公文办理作为党政机关单位日常工作任务中重要的一环&#xff0c;泛微在全程数字化的公文管理体系中融入智能化技…

【GAMES101】Lecture 09 纹理贴图 点查询与范围查询 Mipmap

目录 纹理贴图 纹理放大-双线性插值 点采样纹理所带来的问题 Mipmap 各向异性过滤 纹理贴图 我们在之前的着色里面说过如何给物体上纹理&#xff0c;就是对于已经光栅化的屏幕点&#xff0c;就是每个像素的中心&#xff0c;去寻找对应纹理的映射位置的纹理颜色&#xff0…