掌握大语言模型技术: 推理优化

news2025/1/15 22:43:41

掌握大语言模型技术_推理优化

在这里插入图片描述

堆叠 Transformer 层来创建大型模型可以带来更好的准确性、少样本学习能力,甚至在各种语言任务上具有接近人类的涌现能力。 这些基础模型的训练成本很高,并且在推理过程中可能会占用大量内存和计算资源(经常性成本)。 当今最流行的大型语言模型 (LLM) 的参数大小可以达到数百到数千亿,并且根据用例,可能需要摄取长输入(或上下文),这也会增加费用。

这篇文章讨论了LLM推理中最紧迫的挑战,以及一些实用的解决方案。 读者应该对 Transformer 架构和一般的注意力机制有基本的了解。 掌握 LLM 推理的复杂性至关重要,我们将在下一节中讨论。

了解LLM推理

大多数流行的纯解码器 LLM(例如 GPT-3)都是针对因果建模目标进行预训练的,本质上是作为下一个词预测器。 这些 LLM 将一系列标记作为输入,并自回归生成后续标记,直到它们满足停止条件(例如,生成标记数量的限制或停止词列表)或直到生成特殊的 <end> 标记生成结束的令牌。 该过程涉及两个阶段:预填充阶段和解码阶段。

请注意,标记是模型处理的语言的原子部分。 一个令牌大约是四个英文字符。 所有自然语言输入在输入模型之前都会转换为标记。

预填充阶段或处理输入

在预填充阶段,LLM 处理输入令牌以计算中间状态(键和值),用于生成“第一个”新令牌。 每个新标记都依赖于所有先前的标记,但由于输入的全部范围已知,因此在较高级别上,这是高度并行化的矩阵-矩阵运算。 它有效地使 GPU 利用率饱和。

解码阶段或生成输出

在解码阶段,LLM 一次自回归生成一个输出标记,直到满足停止条件。 每个顺序输出令牌需要知道所有先前迭代的输出状态(键和值)。 与预填充阶段相比,这就像矩阵向量运算未充分利用 GPU 计算能力。 数据(权重、键、值、激活)从内存传输到 GPU 的速度决定了延迟,而不是计算实际发生的速度。 换句话说,这是一个内存限制操作。

本文中的许多推理挑战和相应的解决方案都涉及此解码阶段的优化:高效的注意力模块、有效管理键和值等等。

不同的LLM可能使用不同的标记器,因此比较它们之间的输出标记可能并不简单。 在比较推理吞吐量时,即使两个 LLM 每秒输出的令牌相似,如果它们使用不同的令牌生成器,它们也可能不相等。 这是因为相应的标记可能代表不同数量的字符。

批处理

提高 GPU 利用率和有效吞吐量的最简单方法是通过批处理。 由于多个请求使用相同的模型,因此权重的内存成本被分散。 较大批量传输到 GPU 一次处理将利用更多可用计算。

然而,批量大小只能增加到一定限制,此时可能会导致内存溢出。 为了更好地理解为什么会发生这种情况,需要查看键值 (KV) 缓存和 LLM 内存要求。

传统批处理(也称为静态批处理)不是最佳的。 这是因为对于批次中的每个请求,LLM 可能会生成不同数量的完成令牌,并且随后它们具有不同的执行时间。 因此,批次中的所有请求都必须等待最长的请求完成,而生成长度的巨大差异可能会加剧这种情况。 有一些方法可以缓解这种情况,例如稍后将讨论的动态批处理。

键值缓存

解码阶段的一种常见优化是 KV 缓存。 解码阶段在每个时间步生成单个令牌,但每个令牌取决于所有先前令牌的键和值张量(包括预填充时计算的输入令牌的 KV 张量,以及当前时间步之前计算的任何新 KV 张量) 。

为了避免在每个时间步重新计算所有标记的所有这些张量,可以将它们缓存在 GPU 内存中。 每次迭代,当计算出新元素时,它们都会被简单地添加到正在运行的缓存中,以便在下一次迭代中使用。 在一些实现中,模型的每一层都有一个KV缓存。

LLM内存要求

实际上,GPU LLM 内存需求的两个主要贡献者是模型权重和 KV 缓存。

  • 模型权重:模型参数占用内存。 例如,具有 70 亿个参数的模型(例如 Llama 2 7B),以 16 位精度(FP16 或 BF16)加载,将占用大约 7B * sizeof(FP16) ~= 14 GB 的内存。
  • KV缓存:自注意力张量的缓存占用内存以避免冗余计算。
    使用批处理时,批处理中每个请求的 KV 缓存仍然必须单独分配,并且可能会占用大量内存。 下面的公式描述了 KV 缓存的大小,适用于当今最常见的 LLM 架构。

每个令牌的 KV 缓存大小(以字节为单位) = 2 * (num_layers) * (num_heads * dim_head) * precision_in_bytes

第一个因子 2 代表 K 和 V 矩阵。 通常,(num_heads * dim_head)的值与transformer的hidden_size(或模型的维度,d_model)相同。 这些模型属性通常可以在模型卡或关联的配置文件中找到。

输入批次中输入序列中的每个标记都需要此内存大小。 假设半精度,KV缓存的总大小由以下公式给出。

KV 缓存的总大小(以字节为单位) = (batch_size) * (sequence_length) * 2 * (num_layers) * (hidden_size) * sizeof(FP16)

例如,对于 16 位精度的 Llama 2 7B 模型,批量大小为 1,KV 缓存的大小将为 1 * 4096 * 2 * 32 * 4096 * 2 字节,即约 2 GB。

有效管理此 KV 缓存是一项具有挑战性的工作。 内存需求随着批量大小和序列长度线性增长,可以快速扩展。 因此,它限制了可服务的吞吐量,并对长上下文输入提出了挑战。 这就是本文中介绍的多项优化背后的动机。

通过模型并行化扩展LLM

减少模型权重的每设备内存占用的一种方法是将模型分布在多个 GPU 上。 分散内存和计算占用空间可以运行更大的模型或更大批量的输入。 模型并行化是训练或推理模型所必需的,该模型需要比单个设备上可用的内存更多的内存,并使训练时间和推理测量(延迟或吞吐量)适合某些用例。 根据模型权重的划分方式,有多种方法可以并行化模型。

请注意,数据并行性也是一种经常在与下面列出的其他技术相同的上下文中提到的技术。 在这种情况下,模型的权重被复制到多个设备上,并且输入的(全局)批量大小在每个设备上被分成微批次。 它通过处理较大的批次来减少总体执行时间。 然而,这是一种训练时间优化,在推理过程中不太相关。

管道并行性

管道并行性涉及将模型(垂直)分片为块,其中每个块包含在单独设备上执行的层的子集。 下图说明了四路管道并行性,其中模型按顺序分区,并且所有层的四分之一子集在每个设备上执行。 一个设备上的一组操作的输出被传递到下一个设备,后者继续执行后续块。 F_n和B_n分别表示设备n上的前向传播和后向传播。 每个设备上存储模型权重的内存需求被有效地四分。

该方法的主要限制是,由于处理的顺序性质,某些设备或层在等待前一层的输出(激活、梯度)时可能保持空闲状态。 这会导致前向和后向传递效率低下或出现“管道气泡”。 在图 2b 中,白色空白区域是具有幼稚管道并行性的大管道气泡,其中设备闲置且未得到充分利用。

微批处理可以在一定程度上缓解这种情况,如下图所示。 输入的全局批次大小被分成子批次,这些子批次被一一处理,最后累积梯度。 请注意,F_{n,m}B_{n,m} 分别表示设备 n 上具有微批次 m 的前向传播和后向传播。 这种方法缩小了管道气泡的尺寸,但并没有完全消除它们。

张量并行性

张量并行性涉及将模型的各个层(水平)分片为更小的、独立的计算块,这些计算块可以在不同的设备上执行。 注意力块和多层感知器(MLP)层是可以利用张量并行性的变压器的主要组成部分。 在多头注意力块中,每个头或一组头可以分配给不同的设备,以便它们可以独立且并行地计算。

在这里插入图片描述

上图显示了两层 MLP 上双向张量并行的示例,每一层都由一个圆角框表示。 在第一层中,权重矩阵 A 被分为 A_1 和 A_2。 计算 XA_1 和 XA_2 可以在两个不同设备上的输入 X 的同一批次(f 是恒等运算)上独立执行。 这有效地将每个设备上存储权重的内存需求减半。 归约运算 g 组合第二层中的输出。

上图是自注意力层中双向张量并行的示例。 多个注意力头本质上是并行的,并且可以跨设备分割。

序列并行性

张量并行性有局限性,因为它需要将层划分为独立的、可管理的块。 它不适用于 LayerNorm 和 Dropout 等操作,而是在张量并行组中复制。 虽然 LayerNorm 和 Dropout 的计算成本较低,但它们确实需要大量内存来存储(冗余)激活。

如减少大型变压器模型中的激活重新计算所示,这些操作在输入序列中是独立的,并且这些操作可以沿着“序列维度”进行分区,从而提高内存效率。 这称为序列并行性。

模型并行技术不是唯一的,可以结合使用。 它们可以帮助扩展和减少 LLM 的每 GPU 内存占用量,但也有专门针对注意力模块的优化技术。

优化注意力机制

缩放点积注意力 (SDPA) 操作将查询和键值对映射到输出,如 Attention Is All You Need 中所述。

多头注意力
作为 SDPA 的增强,与 Q、K 和 V 矩阵的不同学习投影并行多次执行注意力层,使模型能够共同关注来自不同位置的不同表示子空间的信息。 这些子空间是独立学习的,使模型能够更丰富地理解输入中的不同位置。

如图所示,多个并行注意力操作的输出被串联并线性投影以将它们组合起来。 每个并行注意力层称为“头”,这种方法称为多头注意力(MHA)。

在原始工作中,当使用八个并行注意力头时,每个注意力头在模型的缩减维度(例如 d m o d e l / 8 d_{model}/8 dmodel/8)上运行。 这使得计算成本与单头注意力相似。

多查询注意力

MHA 的推理优化之一称为多查询注意力 (MQA),如 Fast Transformer Decoding 中提出的,在多个注意力头之间共享键和值。 与以前一样,查询向量仍然被投影多次。

虽然 MQA 中完成的计算量与 MHA 相同,但从内存读取的数据量(键、值)只是以前的一小部分。 当受内存带宽限制时,这可以实现更好的计算利用率。 它还减少了内存中 KV 缓存的大小,为更大的批量大小留出了空间。

键值头的减少会带来潜在的准确性下降。 此外,需要在推理时利用这种优化的模型需要在启用 MQA 的情况下进行训练(或至少使用大约 5% 的训练量进行微调)。

分组查询注意力

分组查询注意力 (GQA) 通过将键和值投影到几组查询头,在 MHA 和 MQA 之间取得平衡(下图)。 在每个组中,它的行为类似于多查询注意力。

下图显示多头注意力有多个键值头(左)。 分组查询注意力(中心)的键值头多于一个,但少于查询头的数量,这是内存需求和模型质量之间的平衡。 多查询注意力(右)具有单个键值头,有助于节省内存。

最初使用 MHA 训练的模型可以使用原始训练计算的一小部分通过 GQA 进行“升级训练”。 它们获得接近 MHA 的质量,同时保持接近 MQA 的计算效率。 Llama 2 70B 是利用 GQA 的模型示例。

MQA 和 GQA 等优化通过减少存储的键头和值头的数量来帮助减少 KV 缓存所需的内存。 KV 缓存的管理方式可能仍然效率低下。 与优化注意力模块本身不同,下一节将介绍一种更高效的 KV 缓存管理技术。

Flash attention

优化注意力机制的另一种方法是修改某些计算的顺序,以更好地利用 GPU 的内存层次结构。 神经网络通常用层来描述,大多数实现也以这种方式布局,每次按顺序对输入数据进行一种计算。 这并不总是能带来最佳性能,因为对已经进入内存层次结构的更高、性能更高级别的值进行更多计算可能是有益的。

在实际计算过程中将多个层融合在一起可以最大限度地减少 GPU 需要读取和写入内存的次数,并将需要相同数据的计算分组在一起,即使它们是神经网络中不同层的一部分。

一种非常流行的融合是 FlashAttention,这是一种 I/O 感知精确注意算法,详细信息请参阅 FlashAttention:具有 IO 感知的快速且内存高效的精确注意。 精确注意力意味着它在数学上与标准多头注意力相同(具有可用于多查询和分组查询注意力的变体),因此可以无需修改即可交换到现有的模型架构,甚至是已经训练的模型 。

I/O 感知意味着在将操作融合在一起时,它会考虑前面讨论的一些内存移动成本。 特别是,FlashAttention 使用“平铺”一次性完全计算并写出最终矩阵的一小部分,而不是分步对整个矩阵进行部分计算,写出中间的中间值。

下图显示了 40 GB GPU 上的平铺 FlashAttention 计算模式和内存层次结构。 右图显示了对注意力机制的不同组件进行融合和重新排序所带来的相对加速。

通过分页高效管理 KV 缓存

有时,KV 缓存会静态地“过度配置”,以考虑最大可能的输入(支持的序列长度),因为输入的大小是不可预测的。 例如,如果模型支持的最大序列长度为 2,048,则无论请求中输入和生成的输出的大小如何,都将在内存中保留大小为 2,048 的数据。 该空间可以是连续分配的,并且通常其中大部分未被使用,从而导致内存浪费或碎片。 该保留空间在请求的生命周期内被占用。

受操作系统分页的启发,PagedAttention 算法能够将连续的键和值存储在内存中的不连续空间中。 它将每个请求的 KV 缓存划分为代表固定数量令牌的块,这些块可以不连续存储。

在注意力计算期间,使用记录帐户的块表根据需要获取这些块。 当新的代币产生时,就会进行新的区块分配。 这些块的大小是固定的,消除了因不同请求需要不同分配等挑战而产生的低效率。 这极大地限制了内存浪费,从而实现了更大的批量大小(从而提高了吞吐量)。

模型优化技术

到目前为止,我们已经讨论了 LLM 消耗内存的不同方式、跨多个不同 GPU 分配内存的一些方式,以及优化注意力机制和 KV 缓存。 还有多种模型优化技术可以通过修改模型权重本身来减少每个 GPU 上的内存使用。 GPU 还具有专用硬件来加速这些修改值的运算,从而为模型提供更多加速。

量化

量化是降低模型权重和激活精度的过程。 大多数模型都以 32 或 16 位精度进行训练,其中每个参数和激活元素占用 32 或 16 位内存(单精度浮点)。 然而,大多数深度学习模型可以用每个值八个甚至更少的位来有效表示。

下图显示了一种可能的量化方法之前和之后的值分布。 在这种情况下,舍入会丢失一些精度,并且剪裁会丢失一些动态范围,从而允许以更小的格式表示值。

降低模型的精度可以带来多种好处。 如果模型占用的内存空间较少,则可以在相同数量的硬件上安装更大的模型。 量化还意味着您可以在相同的带宽上传输更多参数,这有助于加速带宽有限的模型。

LLM 有许多不同的量化技术,涉及降低激活、权重或两者的精度。 量化权重要简单得多,因为它们在训练后是固定的。 然而,这可能会留下一些性能问题,因为激活仍然保持在更高的精度。 GPU 没有用于乘以 INT8 和 FP16 数字的专用硬件,因此必须将权重转换回更高精度以进行实际运算。

还可以量化激活、变压器块和网络层的输入,但这也有其自身的挑战。 激活向量通常包含异常值,有效地增加了它们的动态范围,并使以比权重更低的精度表示这些值变得更具挑战性。

一种选择是通过模型传递代表性数据集并选择以比其他激活更高的精度表示某些激活来找出这些异常值可能出现的位置 (LLM.int8())。 另一种选择是借用易于量化的权重的动态范围,并在激活中重用该范围。

稀疏性

与量化类似,事实证明,许多深度学习模型对于修剪或用 0 本身替换某些接近 0 的值具有鲁棒性。 稀疏矩阵是许多元素为 0 的矩阵。这些矩阵可以用压缩形式表示,比完整的稠密矩阵占用的空间更少。

在这里插入图片描述

GPU 尤其具有针对某种结构化稀疏性的硬件加速,其中每四个值中有两个由零表示。 稀疏表示还可以与量化相结合,以实现更大的执行速度。 寻找以稀疏格式表示大型语言模型的最佳方法仍然是一个活跃的研究领域,并为未来提高推理速度提供了一个有希望的方向。

蒸馏

缩小模型大小的另一种方法是通过称为蒸馏的过程将其知识转移到较小的模型。 此过程涉及训练较小的模型(称为学生)来模仿较大模型(教师)的行为。

蒸馏模型的成功例子包括 DistilBERT,它将 BERT 模型压缩了 40%,同时保留了 97% 的语言理解能力,速度提高了 60%。

虽然LLM中的蒸馏是一个活跃的研究领域,但神经网络的一般方法首先在“蒸馏神经网络中的知识”中描述:

  • 学生网络经过训练,可以反映较大教师网络的性能,使用损失函数来测量其输出之间的差异。 该目标还可能包括将学生的输出与真实标签进行匹配的原始损失函数。
  • 匹配的教师输出可以是最后一层(称为 logits)或中间层激活。
    下图显示了知识蒸馏的总体框架。 教师的 logits 是学生使用蒸馏损失进行优化的软目标。 其他蒸馏方法可能会使用其他损失措施来从老师那里“蒸馏”知识。

蒸馏的另一种方法是使用教师合成的数据对LLM学生进行监督培训,这在人工注释稀缺或不可用时特别有用。 一步一步蒸馏! 更进一步,除了作为基本事实的标签之外,还从LLM教师那里提取基本原理。 这些基本原理作为中间推理步骤,以数据有效的方式培训规模较小的LLM。

值得注意的是,当今许多最先进的LLM都拥有限制性许可证,禁止使用他们的成果来培训其他LLM,这使得找到合适的教师模型具有挑战性。

模型服务技术

模型执行经常受到内存带宽的限制,特别是权重中的带宽限制。 即使在应用了前面描述的所有模型优化之后,它仍然很可能受到内存限制。 因此,您希望在加载模型权重时尽可能多地处理它们。 换句话说,尝试并行做事。 可以采取两种方法:

  • 动态批处理涉及同时执行多个不同的请求。
  • 推测推理涉及并行执行序列的多个不同步骤以尝试节省时间。

动态批处理

LLM 具有一些独特的执行特征,这些特征可能导致在实践中难以有效地批量请求。 一个模型可以同时用于多种看起来非常不同的任务。 从聊天机器人中的简单问答响应到文档摘要或长代码块的生成,工作负载是高度动态的,输出大小变化几个数量级。

这种多功能性使得批处理请求并有效地并行执行它们变得具有挑战性——这是服务神经网络的常见优化。 这可能会导致某些请求比其他请求更早完成。

为了管理这些动态负载,许多LLM服务解决方案包括一种称为连续或动态批处理的优化调度技术。 这利用了这样一个事实:LLM的整个文本生成过程可以分解为模型上的多次执行迭代。

通过动态批处理,服务器运行时会立即从批处理中逐出已完成的序列,而不是等待整个批处理完成后再继续处理下一组请求。 然后,它开始执行新请求,而其他请求仍在进行中。 因此,动态批处理可以极大地提高实际用例中 GPU 的整体利用率。

推测性推理

推测推理也称为推测采样、辅助生成或分块并行解码,是并行执行 LLM 的另一种方式。 通常,GPT 风格的大语言模型是自回归模型,逐个生成文本标记。

生成的每个标记都依赖于它之前的所有标记来提供上下文。 这意味着在常规执行中,不可能从同一个序列并行生成多个令牌——必须等待第 n 个令牌生成后才能生成 n+1 个令牌。

下图显示了推测推理的示例,其中草稿模型临时预测并行验证或拒绝的多个未来步骤。 在这种情况下,草稿中的前两个预测令牌被接受,而最后一个在继续生成之前被拒绝并删除。

推测性抽样提供了一种解决方法。 这种方法的基本思想是使用一些“更便宜”的过程来生成几个令牌长的草案延续。 然后,并行执行多个步骤的主要“验证”模型,使用廉价草案作为需要的执行步骤的“推测”上下文。

如果验证模型生成与草稿相同的令牌,那么您就知道接受这些令牌作为输出。 否则,您可以丢弃第一个不匹配标记之后的所有内容,并使用新的草稿重复该过程。

如何生成草稿代币有许多不同的选项,每个选项都有不同的权衡。 您可以训练多个模型,或在单个预训练模型上微调多个头,以预测未来多个步骤的标记。 或者,您可以使用小型模型作为草稿模型,使用更大、功能更强大的模型作为验证器。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1409998.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据结构(队列)

一.什么是队列 1.队列定义 队列是一种特殊的线性表&#xff0c;特殊之处在于他只允许在表的前端(front)进行删除操作&#xff0c;而在表的后端(rear)进行插入操作。和栈一样&#xff0c;队列也是一种操作受限制的线性表。进行插入操作的一端称为队尾&#xff0c;进行删除操作的…

微服务理解篇

一 :架构演变 1 单体架构: 简单理解为一个服务涵盖所有需求功能2 垂直架构: 按照业务功能将单体架构拆分成小模块服务, 如:订单系统,用户系统,商品系统 ##缺点 引入分布式事务,分布式锁等,优点:模块解耦## 垂直拆分:根据业务层级拆分,比如商城的订单系统,用户系统,商品系统…

搭建属于自己本地的网站

1.关闭selinux 1.1 为什么关闭&#xff1f; 如果selinux不关闭的话&#xff0c;修改ssh端口等策略会不生效&#xff0c; 比如向将ssh端口修改为22011&#xff0c;修改后重启sshd服务&#xff0c;端口未修改&#xff0c;此时需要执行setendforce 0 命令&#xff0c;然后再次重…

leetcode hot100组合

在本题中&#xff0c;是要求返回[1,n]这个数组的长度为k的组合。涉及到排列、组合、棋盘、分割等问题的时候&#xff0c;要考虑利用回溯来进行解决。 回溯和递归类似&#xff0c;也分为三步进行分析 确定递归函数的返回值和参数&#xff1a;一般来说返回值都是void&#xff0c…

【前端web入门第一天】02 HTML图片标签 超链接标签

文章目录: 1.HTML图片标签 1.1 图像标签-基本使用1.2 图像标签-属性1.3 路径 1.3.1 相对路径 1.3.2 绝对路径 2.超链接标签 3.音频标签 4.视频标签 1.HTML图片标签 1.1 图像标签-基本使用 作用:在网页中插入图片。 <img src"图片的URL">src用于指定图像…

【2024】新建mysql数据库,如何选择字符集和排序规则

如何使用 Navicat 新建 MySQL 数据库&#xff0c;并选择字符集与排序规则 如何使用 Navicat 新建 MySQL 数据库并选择字符集与排序规则1. 开始之前2. 新建数据库步骤 1: 打开 Navicat步骤 2: 创建新数据库步骤 3: 填写数据库名称 常见的字符集和排序规则及其选择场景1. 字符集&…

使用__missing__方法实现映射表多格式主键

背景介绍 在python中&#xff0c;我们经常使用字典类型实现映射表的功能&#xff0c;通过字典的主键遍历获取对应的值&#xff0c;从而实现从一个值映射到另一个值的功能 但是这种映射是十分硬性的&#xff0c;例如&#xff0c;假如我的映射表为{‘1’&#xff1a;one&#x…

串口控制器

1. 串口通信 1.1 什么是串口 是一种通信方式&#xff08;通信协议&#xff09; 主要通过串行方式完成设备间的数据通信 通信领域中使用最频繁&#xff0c;实现方式最简单的一种通信方式 串口: 全双工串行异步通信协议 串口3线: RX 接收 TX 发送 GND 共地信号 参考地 …

纳斯达克VS路透社MIFI大屏直投-大舍传媒

纳斯达克VS路透社MIFI大屏直投-大舍传媒 引言 在数字时代的今天&#xff0c;大屏投放成为一种广泛应用的营销手段和传媒方式。纳斯达克大屏和路透社MIFI大屏作为两个重要的投放平台&#xff0c;为企业和机构提供了广告和宣传的机会。 纳斯达克大屏的魅力 纳斯达克大屏位于纽…

Web网页生成桌面应用

前言&#xff1a;网页生成桌面指的是将一个网页保存为桌面应用程序的形式&#xff0c;使得用户可以在桌面上直接打开该网页&#xff0c;而不必通过浏览器打开。这种桌面应用程序一般具有独立的窗口、菜单、工具栏等界面元素&#xff0c;能够提供更加方便快捷的使用体验。 实现…

基于Java的学生宿舍门禁信息管理系统的设计与实现(源码+lw+部署文档+讲解等

目录 前言 详细视频演示 具体实现截图 技术栈 后端框架SpringBoot 前端框架Vue 持久层框架MyBaitsPlus 系统测试 系统测试目的 系统功能测试 系统测试结论 代码参考 数据库代码参考 源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、…

(2024,MLLM,扩散,中文数据集扩散预训练,多模态提示引导微调)UNIMO-G:通过多模态条件扩散进行统一图像生成

UNIMO-G: Unified Image Generation through Multimodal Conditional Diffusion 公和众和号&#xff1a;EDPJ&#xff08;进 Q 交流群&#xff1a;922230617 或加 VX&#xff1a;CV_EDPJ 进 V 交流群&#xff09; 目录 1. 摘要 2. 方法 3. 结果 1. 摘要 现有的文本到图像…

AIGC:让生成式AI成为自己的外脑(文末送书)

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;数据结构、网络奇遇记 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 &#x1f4cb;前言一. 什么是AIGC?二. AIGC如何运作&#xff1f;2.1 步骤一&#xff1a;收集数据2.…

算法基础之线段树

文章目录 线段树 线段树 线段树的原理十分简单&#xff0c;但是在代码上会相对复杂一点 他也是用来维护一个序列&#xff0c;是一个完全二叉树的形状 对于每一个节点是一个结构体 struct Node {int L,R; int sum; // 以和为例 };假设序列为1到7&#xff0c;那么根节点存的…

5G安卓手机定制_基于天玑900的安卓主板方案

5G安卓手机方案是一款采用联发科MT6877(天玑900)平台的高性能、可运行安卓操作系统的5G智能模块。该手机采用台积电6纳米低功耗工艺&#xff0c;主频高达2.4GHz&#xff0c;内存支持LPDDR5&#xff0c;并支持5G Sub-6GHz全频段和5G双载波聚合技术等多种制式。同时&#xff0c;该…

统计学-R语言-7.4

文章目录 前言非参数检验两个独立样本的Mann-Whitney检验 练习 前言 本片是对非参数检验最后的介绍。 非参数检验 两个独立样本的Mann-Whitney检验 Mann -Whitney检验也称为Mann- Whitney U检验&#xff08;Mann-Whitney U test&#xff09;或称为 Wilcoxon秩和检验&#xf…

Vue-38、Vue中插件使用

1、新建plugins.js文件 2、可以在plugins.js 定义全局过滤器 定义全局指令 定义混入 给vue原型上添加一个方法 export default {install(Vue){console.log("install",Vue);//全局过滤器Vue.filter(mySlice,function (value) {return value.slice(0,4)});//定义全局…

【TCP】传输控制协议

前言 TCP&#xff08;Transmission Control Protocol&#xff09;即传输控制协议&#xff0c;是一种面向连接的、可靠的、基于字节流的传输层通信协议。它由IETF的RFC 793定义&#xff0c;为互联网中的数据通信提供了稳定的传输机制。TCP在不可靠的IP层之上实现了数据传输的可…

【第十六课】哈希表(acwing-841字符串哈希 / 详解 / 优秀的文章推荐 / c++代码)

目录 思想 代码如下 一些解释 1.基数P的选择 2.unsigned long long类型 可能需要看的文章博客 思想 咳咳&#xff0c;感觉这个刚开始第一遍接触的时候很抽象&#xff0c;&#xff0c;&#xff0c;还好网友们很强&#xff0c;有很通俗的解释办法hh。 字符串的哈希核心思…

浅谈WPF之UI布局

一个成功的软件&#xff0c;离不开人性化的UI设计&#xff0c;如何抓住用户第一视觉&#xff0c;让用户产生依赖感&#xff0c;合适优雅的布局必不可少。本文以一些简单的小例子&#xff0c;简述WPF中布局 面板 控件的使用&#xff0c;仅供学习分享使用&#xff0c;如有不足之处…