第二篇【传奇开心果短博文系列】Python的OpenCV库技术点案例示例:图像处理

news2024/11/15 13:31:30

传奇开心果短博文系列

  • 系列短博文目录
    • Python的OpenCV库技术点案例示例短博文系列
  • 博文目录
    • 一、项目目标
    • 二、第一个示例代码
    • 三、第二个示例代码
    • 四、第三个示例代码
    • 五、第四个示例代码
    • 六、第五个示例代码
    • 七、知识点归纳总结

系列短博文目录

Python的OpenCV库技术点案例示例短博文系列

博文目录

一、项目目标

在这里插入图片描述OpenCV图像处理:包括图像滤波、边缘检测、图像变换、颜色空间转换等功能,写示例代码。

二、第一个示例代码

图像滤波
边缘检测
图像变换
颜色空间转换

import cv2
import numpy as np

# 读取图像
img = cv2.imread('input.jpg')

# 图像滤波
blur = cv2.GaussianBlur(img, (5, 5), 0)

# 边缘检测
edges = cv2.Canny(img, 100, 200)

# 图像变换
rows, cols = img.shape[:2]
M = cv2.getRotationMatrix2D((cols/2, rows/2), 45, 1)
dst = cv2.warpAffine(img, M, (cols, rows))

# 颜色空间转换
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

# 显示结果
cv2.imshow('Original', img)
cv2.imshow('Blurred', blur)
cv2.imshow('Edges', edges)
cv2.imshow('Transformed', dst)
cv2.imshow('HSV', hsv)
cv2.waitKey(0)
cv2.destroyAllWindows()

三、第二个示例代码

灰度图像
在这里插入图片描述
膨胀和腐蚀
透视变换
转换为LAB颜色空间

import cv2
import numpy as np

# 读取图像
img = cv2.imread('input.jpg')

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

# 膨胀和腐蚀
kernel = np.ones((5,5),np.uint8)
dilation = cv2.dilate(thresh, kernel, iterations=1)
erosion = cv2.erode(thresh, kernel, iterations=1)

# 透视变换
pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]])
pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]])
M = cv2.getPerspectiveTransform(pts1,pts2)
perspective = cv2.warpPerspective(img,M,(300,300))

# 转换为LAB颜色空间
lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)

# 显示结果
cv2.imshow('Original', img)
cv2.imshow('Gray', gray)
cv2.imshow('Thresh', thresh)
cv2.imshow('Dilation', dilation)
cv2.imshow('Erosion', erosion)
cv2.imshow('Perspective', perspective)
cv2.imshow('LAB', lab)
cv2.waitKey(0)
cv2.destroyAllWindows()

四、第三个示例代码

图像缩放
旋转图像
图像平移
图像融合

import cv2
import numpy as np

# 读取图像
img = cv2.imread('input.jpg')

# 图像缩放
resized = cv2.resize(img, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_CUBIC)

# 旋转图像
rows, cols = img.shape[:2]
M = cv2.getRotationMatrix2D((cols/2, rows/2), 90, 1)
rotated = cv2.warpAffine(img, M, (cols, rows))

# 图像平移
M = np.float32([[1, 0, 100], [0, 1, 50]])
translated = cv2.warpAffine(img, M, (cols, rows))

# 图像融合
img2 = cv2.imread('input2.jpg')
blended = cv2.addWeighted(img, 0.7, img2, 0.3, 0)

# 显示结果
cv2.imshow('Resized', resized)
cv2.imshow('Rotated', rotated)
cv2.imshow('Translated', translated)
cv2.imshow('Blended', blended)
cv2.waitKey(0)
cv2.destroyAllWindows()

五、第四个示例代码

边缘保留滤波
在这里插入图片描述在这里插入图片描述在这里插入图片描述

import cv2
import numpy as np

# 读取图像
img = cv2.imread('input.jpg')

# 边缘保留滤波
dst = cv2.edgePreservingFilter(img, flags=1, sigma_s=60, sigma_r=0.4)

# 图像修复
mask = np.zeros(img.shape[:2], np.uint8)
mask[100:300, 100:400] = 255
inpainted = cv2.inpaint(img, mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)

# 角点检测
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
corners = cv2.goodFeaturesToTrack(gray, maxCorners=25, qualityLevel=0.01, minDistance=10)

# 标记角点
for corner in corners:
    x, y = corner.ravel()
    cv2.circle(img, (x, y), 5, (0, 0, 255), -1)

# 显示结果
cv2.imshow('Edge Preserving Filter', dst)
cv2.imshow('Inpainted', inpainted)
cv2.imshow('Corners', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

六、第五个示例代码

图像金字塔
角点检测与追踪
创建随机颜色
光流追踪

import cv2
import numpy as np

# 读取图像
img = cv2.imread('input.jpg')

# 图像金字塔
lower_reso = cv2.pyrDown(img)
higher_reso = cv2.pyrUp(img)

# 角点检测与追踪
feature_params = dict( maxCorners = 100, qualityLevel = 0.3, minDistance = 7, blockSize = 7 )
lk_params = dict( winSize  = (15,15), maxLevel = 2, criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
p0 = cv2.goodFeaturesToTrack(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), mask = None, **feature_params)
old_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 创建随机颜色
color = np.random.randint(0,255,(100,3))

# 光流追踪
mask = np.zeros_like(img)
while True:
    ret, frame = cap.read()
    frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
    good_new = p1[st==1]
    good_old = p0[st==1]
    for i,(new,old) in enumerate(zip(good_new,good_old)):
        a,b = new.ravel()
        c,d = old.ravel()
        mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)
        frame = cv2.circle(frame,(a,b),5,color[i].tolist(),-1)
    img = cv2.add(frame,mask)
    cv2.imshow('frame',img)
    k = cv2.waitKey(30) & 0xff
    if k == 27:
        break
    old_gray = frame_gray.copy()
    p0 = good_new.reshape(-1,1,2)

# 关闭摄像头
cap.release()
cv2.destroyAllWindows()

七、知识点归纳总结

在上面的代码示例中,我们涉及了许多计算机视觉的常见操作和技术。以下是这些知识点的归纳总结:

在这里插入图片描述1. 读取和显示图像:使用OpenCV库的cv2.imread()cv2.imshow()函数读取和显示图像。

  1. 图像缩放:使用cv2.resize()函数对图像进行缩放操作。

  2. 图像旋转:使用cv2.getRotationMatrix2D()cv2.warpAffine()函数对图像进行旋转操作。

  3. 图像平移:使用cv2.warpAffine()函数对图像进行平移操作。

  4. 图像融合:使用cv2.addWeighted()函数对两幅图像进行融合操作。

  5. 边缘保留滤波:使用cv2.edgePreservingFilter()函数进行边缘保留滤波操作。

  6. 图像修复:使用cv2.inpaint()函数对图像进行修复操作。

  7. 角点检测与追踪:使用cv2.goodFeaturesToTrack()和光流法进行角点检测和追踪操作。

  8. 图像金字塔:使用cv2.pyrDown()cv2.pyrUp()函数进行图像金字塔操作。

在这里插入图片描述以上这些知识点涵盖了计算机视觉中的许多常见操作和技术,可以帮助我们对图像进行处理、分析和理解。这些技术在许多领域都有广泛的应用,包括图像处理、计算机视觉、机器学习等。希望这些知识点的归纳总结对您有所帮助!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1404315.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

初识k8s(概述、原理、安装)

文章目录 概述由来主要功能 K8S架构架构图组件说明ClusterMasterNodekubectl 组件处理流程 K8S概念组成PodPod控制器ReplicationController(副本控制器)ReplicaSet (副本集)DeploymentStatefulSet (有状态副本集&#…

docker配置node项目

首先在项目根目录创建Dockerfile FROM node:18.19RUN mkdir /appCOPY . /appWORKDIR /appRUN npm installEXPOSE 8081CMD ["npm","run","start"]添加.dockerignore文件 /dist /node_moduleslogs *.log npm-debug.log* yarn-debug.log* yarn-er…

Linux中如何根据一个单词快速锁定到日志

Linux中如何根据一个单词快速锁定到日志 记住,人生的价值不在于终点的远近,而在于沿途的风景和历经的风雨。每一步都是成长,每一刻都是奇迹。保持一颗热情奔放的心,勇敢地迎接生活的挑战,你将会发现,每一天…

ppt流程图模板怎么绘制?手把手教你绘制PPT流程图

ppt流程图模板怎么绘制?在工作中,演示文稿中的流程图往往能够清晰地展示项目的流程和逻辑,使观众更好地理解内容。但是,很多人在制作PPT时,可能会对如何绘制流程图感到困惑。今天,就给大家手把手教一下如何…

基于springboot+vue的网上点餐系统(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 背景和意…

JavaEE 网络原理

JavaEE 网络原理 文章目录 JavaEE 网络原理1. 网络互连1.1 局域网LAN1.2 广域网WAN 2. 网络通信基础2.1 IP地址2.2 端口号 3. 网络协议3.1 概念3.2 五元组3.3 协议分层3.4 TCP/IP 五层模型3.5 封装和分用 1. 网络互连 随着时代的发展,需要多个计算机协同工作来完成…

中仕教育:选调生和考研可以一起准备吗?

研究生入学考试,是本科生们提升学历继续深造的主要途径。而选调生,是指通过考试选拔的优秀应届毕业生,经过锻炼后分配到各级工作。这两者作为大部分人选择的方向,发展前景都是比较好的。 考研和选调生可以一起准备吗? 是可以的…

8. UE5 RPG创建UI(上)

UI是显示角色的一部分属性玩家可以直接查看的界面,通过直观的形式在屏幕上显示角色的各种信息。如何使用一种可扩展,可维护的形式来制作,这不得不说到耳熟能详的MVC架构。 MVC(Model-View-Controller)是一种常见的软件…

计算机网络-AAA原理概述

对于任何网络,用户管理都是最基本的安全管理要求之一,在华为设备管理中通过AAA框架进行认证、授权、计费实现安全验证。 一、AAA概述 AAA(Authentication(认证), Authorization(授权), and Accounting(计费))是一种管理框架&#…

vue3-组件基础

什么是组件 组件允许我们将 UI 划分为独立的、可重用的部分,并且可以对每个部分进行处理。在实际应用中,组件常常被组织成层层嵌套的树状结构。 定义一个组件 我们一般会将 Vue 组件定义在一个单独的 .vue 文件中,这被叫做单文件组件 (简称…

Leetcode刷题笔记题解(C++):670. 最大交换

思路: 假设数字 9923676 从右边找最大的数字的下标maxindex,然后向左边寻找小于最大数字的数的下标,直到找到最左边,交换两者得出新的数字,比如从左到右递减的数字如9621则不需要变化,在寻找中记录这种数…

最长子字符串的长度(二) - 华为OD统一考试

OD统一考试(C卷) 分值: 200分 题解: Java / Python / C 题目描述 给你一个字符串 s,字符串s首尾相连成一个环形 ,请你在环中找出’l’、‘o’、‘x’ 字符都恰好出现了偶数次最长子字符串的长度。 输入描…

【数据结构与算法】排序算法:冒泡排序,冒泡排序优化,选择排序、选择排序优化

目录 一、冒泡排序 1、冒泡排序思想 2、冒泡排序算法的性能分析 代码实现: 二、选择排序 1、选择排序思想 2、选择排序算法的性能分析 代码实现: 一、冒泡排序 1、冒泡排序思想 冒泡排序的基本思想是通过相邻元素之间的比较和交换来逐步将最大…

前端JavaScript篇之实现有序数组原地去重方法有哪些?

目录 实现有序数组原地去重方法有哪些?方法一:使用 Set 数据结构代码实现:思路说明: 方法二:使用双指针遍历代码实现:思路说明: 实现有序数组原地去重方法有哪些? 在 JavaScript 中…

Dockerfile-xxxx

1、Dockerfile-server FROM openjdk:8-jdk-alpine WORKDIR /app COPY . . CMD java -Xms1536M -Xmx1536M -XX:UseG1GC -jar -Dlog4j2.formatMsgNoLookupstrue -Dloader.pathresources,lib -Duser.timezoneGMT-05 /app/server-main-1.0.0.jar 2、Dockerfile-bgd #FROM openjdk…

(笔记总结)C/C++语言的常用库函数(持续记录,积累量变)

写在前面: 由于时间的不足与学习的碎片化,写博客变得有些奢侈。 但是对于记录学习(忘了以后能快速复习)的渴望一天天变得强烈。 既然如此 不如以天为单位,以时间为顺序,仅仅将博客当做一个知识学习的目录&a…

代码+视频R语言绘制逆概率加权后的基线表

基于 PS (倾向评分)的逆概率加权(IPTW )法首先由Rosenbaum作为一种以模型为基础的直接标准化法提出,属于边际结构模型。简单来说,就是把许多协变量和混杂因素打包成一个概率并进行加权,这样的话&#xff0c…

Android双指缩放ScaleGestureDetector检测放大因子大图移动到双指中心点ImageView区域中心,Kotlin

Android双指缩放ScaleGestureDetector检测放大因子大图移动到双指中心点ImageView区域中心,Kotlin 在 Android双击图片放大移动图中双击点到ImageView区域中心,Kotlin-CSDN博客 基础上,这次使用ScaleGestureDetector检测两根手指的缩放动作&a…

开源人工智能AI壁纸生成器--AI Wallpaper Generator

AI Wallpaper Generator AI Wallpaper Generator:AI Wallpaper Generator | AI Wallpaper Shop GitHub地址:https://github.com/all-in-aigc/aiwallpaper 一款开源人工智能AI壁纸生成器,根据用户的输入提示词,即可生成对应的高…

Python Tornado 实现SSE服务端主动推送方案

一、SSE 服务端消息推送 SSE 是 Server-Sent Events 的简称, 是一种服务器端到客户端(浏览器)的单项消息推送。对应的浏览器端实现 Event Source 接口被制定为HTML5 的一部分。相比于 WebSocket,服务器端和客户端工作量都要小很多、简单很多&#xff0c…