用 Python 实现 DeepSeek R1 本地化部署

news2025/2/22 10:23:57

        DeepSeek R1 以其出色的表现脱颖而出,不少朋友想将其本地化部署,网上基于 ollama 的部署方式有很多,但今天我要带你领略一种全新的方法 —— 使用 Python 实现 DeepSeek R1 本地化部署,让你轻松掌握,打造属于自己的 AI 小助手。

硬件环境

        要想让 DeepSeek R1 顺畅运行,硬件得跟上。你的电脑至少得配备 8GB 内存 ,要是想运行更大的模型,比如 7B 及以上的,那最好有更强劲的 CPU 和 GPU,内存也得相应增加。

Python 环境

        安装 Python 3.8 及以上版本,这是后续部署的关键工具,Python 丰富的库和灵活的编程特性,能帮我们更好地实现部署。

安装依赖包

        打开命令行工具,使用 pip 安装 DeepSeek R1 运行所需要的依赖包。比如,如果模型依赖一些自然语言处理相关的库,像 NLTK、transformers 等,都可以通过 pip 一键安装 :

pip install numpy torch nltk transformers

Python 代码配置与运行

        编写 Python 脚本,导入必要的库,比如 transformers 库,用于加载和处理 DeepSeek R1 模型 :(这里以1.5B模型为例)

from transformers import AutoTokenizer, AutoModelForCausalLM
import os

model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
model_path = "./model/deepseek_1.5b"

if not os.path.exists(model_path):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    print("Model loaded successfully.")
    model.save_pretrained(model_path)
    tokenizer.save_pretrained(model_path)
else:
    tokenizer = AutoTokenizer.from_pretrained(model_path)
    model = AutoModelForCausalLM.from_pretrained(model_path)

        实现与模型的交互逻辑,将输入传递给模型进行处理,并输出模型的回复 :

# 使用模型生成文本
input_text = "你好,世界!"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output = model.generate(input_ids, max_length=100)
print(tokenizer.decode(output[0], skip_special_tokens=True))

        等待模型加载完成,并完成推理结果如下:

        完整代码:

from transformers import AutoTokenizer, AutoModelForCausalLM
import os

model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
model_path = "./model/deepseek_1.5b"

if not os.path.exists(model_path):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    print("Model loaded successfully.")
    model.save_pretrained(model_path)
    tokenizer.save_pretrained(model_path)
else:
    tokenizer = AutoTokenizer.from_pretrained(model_path)
    model = AutoModelForCausalLM.from_pretrained(model_path)

# 使用模型生成文本
input_text = "你好,世界!"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output = model.generate(input_ids, max_length=100)
print(tokenizer.decode(output[0], skip_special_tokens=True))

        通过以上用 Python 实现 DeepSeek R1 本地化部署的步骤,你就可以在自己的设备上轻松运行 DeepSeek R1,享受本地化 AI 带来的便捷与高效,无论是用于日常的文本处理,还是更专业的自然语言处理任务,都能轻松应对。赶紧动手试试吧!

网络问题

       特别提醒:如果执行代码时,报如下错误,表示您无法访问网站https://huggingface.co来下载相关资源,请通过合理方式保障主机能够访问网站https://huggingface.co

        最后不忘分享福利:领券网。~O(∩_∩)O~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2301844.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

GitHub基本操作及Git简单命令

GitHub简介 GitHub就是一个远程仓库,远程仓库可以理解为就是一个可以保存自己代码的地方,在实际开发当中一个项目往往是有多个人来共同协作开发完成的,那么就需要一个统一代码保存的地方,而GitHub就是起到一个共享和汇总代码的作…

AI工作流+专业知识库+系统API的全流程任务自动化

我有点悲观,甚至很沮丧,因为AI留给普通人的机会不多了,这既是人类之间权力的斗争,也是硅基生命和碳基生命的斗争。AI自动化是无法避免的趋势,如果人类不能平权,那就只能跪下接受审判。 通过整合AI工作流、专…

本地文件共享——HFS

目录 1.介绍: 2.下载: 3.开始使用: 1.介绍: HFS(HTTP File Server)是一款轻量级的本地文件共享软件,主要用于快速搭建一个基于网页的临时文件服务器,支持通过浏览器直接上传或下载…

第十二届先进制造技术与材料工程国际学术会议 (AMTME 2025)

重要信息 大会官网:www.amtme.org(了解会议,投稿等) 大会时间:2025年3月21-23日 大会地点:中国-广州 简介 2025年第十二届先进制造技术与材料工程 (AMTME 2025) 定于2025年3月21-23日在中国广州隆重举…

【Alertmanager】alertmanager告警系统原理剖析与应用实战,应有尽有非常全面

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全…

C++之虚函数、虚函数表

C 虚函数、虚函数表详解与实践 C中虚函数是实现多态的重要技术,接下来将从汇编、以及gdb调试运行方面下手全面了解虚函数、虚函数表、以及虚函数调用。 原理初认识 一个由虚函数的类将会有一个虚函数表,且所有该类的实例化对象共享一个虚函数表。虚函…

零基础学QT、C++(一)安装QT

目录 如何快速学习QT、C呢? 一、编译器、项目构建工具 1、编译器(介绍2款) 2、项目构建工具 二、安装QT 1、下载QT安装包 2、运行安装包 3、运行QT creator 4、导入开源项目 总结 闲谈 如何快速学习QT、C呢? 那就是项目驱动法&…

Python SMTP 实现邮件发送功能

发送邮件的流程 登录我们邮箱, 书写接收者的邮箱, 书写题目与内容,添加附件, 点击发送。 邮件协议 smtp 是邮件发送的协议。pop3 是邮件接收的协议。 smtplib模块用法 创建协议对象:smtpObj smtplib.SMTP() 创建…

低价窜货要如何管控

在竞争激烈的市场环境中,低价与窜货就像一对如影随形的“孪生兄弟”,给品牌的健康发展带来了极大的困扰。低价销售不仅压缩了合理的利润空间,破坏了市场的价格体系,还会引发恶性竞争,让整个市场陷入混乱无序的状态。而…

《动手学机器人学》笔记

目录 0.介绍1.概述|空间位置、姿态的描述(33)|《动手学机器人学》2.(2)-Robotics Toolbox①(V10.4)3.齐次坐标与变换矩阵4.一般形式的旋转变换矩阵5.(轴角法)…

国产编辑器EverEdit - 文本编辑器的关键特性:文件变更实时监视,多头编辑不掉坑

1 监视文件变更 1.1 应用场景 某些时候,用户会使用多个编辑器打开同一个文件,如果在A编辑器修改保存,但是B编辑器没有重新打开,直接在B编辑器修改再保存,则可能造成在A编辑器中修改的内容丢失,因此&#x…

化学蛋白质组学与药物靶点筛选:DARTS、LiP-MS、TPP、CETSA技术的深度解析

更多详情请看:LiP-MS药物靶点筛选技术 在药物研发的复杂过程中,药物靶点的筛选是关键环节之一。化学蛋白质组学技术的出现,为药物靶点筛选提供了强大的工具,化学蛋白质组学是一门研究细胞或组织中全部蛋白质的化学组成、结构、功…

为AI聊天工具添加一个知识系统 之113 详细设计之54 Chance:偶然和适配 之2

本文要点 要点 祖传代码中的”槽“ (占位符变量) 和 它在实操中的三种槽(占据槽,请求槽和填充槽, 实时数据库(source)中数据(流入 ETL的一个正序流程 行列并发 靶向整形 绑定变量 &#xff09…

PINN求解一维burgers方程

PINN求解一维burgers方程 模型搭建网络与训练结果可视化对比实际结果 完整代码下载链接 PINN求解一维burgers方程 模型 搭建网络与训练 #########-------------- python求解一维burgers方程-------------------################## # -*- coding: utf-8 -*- import os os.envi…

Android 动态加入Activity 时 manifest 注册报错解决。使用manifestPlaceholders 占位

需求如下: 项目 测试demo 有多个渠道,部分渠道包含支付功能,在主测试代码外,需要一个单独 Activity 调用测试代码。 MainActivityPayActivity渠道A包含不包含渠道B包含包含 因为支付功能需要引入对应的 moudule,因此…

【相聚青岛】人工智能与材料国际学术会议即将召开

一、大会简介 人工智能与材料国际会议(ICAIM 2025) 官方网站:www.ic-aim.net 官方邮箱:icaim2025163.com 会议时间:2025年3.21-24 会议地点:中国青岛 会议检索:EI检索 截稿时间:2月…

BFS 解决 FloodFill 算法(典型算法思想)—— OJ例题算法解析思路

目录 一、733. 图像渲染 - 力扣(LeetCode) 算法代码: 算法思路 基础参数 函数入口 检查条件 初始化 BFS BFS 填充过程 返回结果 复杂度分析 总结 二、200. 岛屿数量 - 力扣(LeetCode) 算法代码:…

前端导出word文件,并包含导出Echarts图表等

基础导出模板 const html <html><head><style>body {font-family: Times New Roman;}h1 {text-align: center;}table {border-collapse: collapse;width: 100%;color: #1118FF;font-weight: 600;}th,td {border: 1px solid black;padding: 8px;text-align: …

【复现DeepSeek-R1之Open R1实战】系列8:混合精度训练、DeepSpeed、vLLM和LightEval介绍

这里写目录标题 1 混合精度训练1.1 FP16和FP321.2 优点1.3 存在的问题1.4 解决办法 2 DeepSpeed3 vLLM3.1 存在的问题3.2 解决方法3.2.1 PagedAttention3.2.2 KV Cache Manager3.2.3 其他解码场景 3.3 结论 4 LightEval4.1 主要功能4.2 使用方法4.3 应用场景 本文继续深入了解O…

大模型面经:SFT和RL如何影响模型的泛化或记忆能力?

监督微调 (SFT) 和强化学习 (RL)都是目前大模型的基础模型后训练技术&#xff0c;像DeepSeek-R1、kimi等的训练方法都将两种技术应用到了极致。 如何去设计训练步骤&#xff08;先SFT再RL&#xff0c;还是直接RL&#xff09;都需要对SFT和RL的能力有较深刻的了解。 本篇就以面…