【经典算法】有趣的算法之---粒子群算法梳理

news2025/1/15 22:41:10

every blog every motto: You can do more than you think.
https://blog.csdn.net/weixin_39190382?type=blog

0. 前言

粒子群算法

粒子群算法(Particle Swarm Optimization,PSO)是一种用于解决优化问题的元启发式算法。它通过模拟鸟群或鱼群中的行为来进行优化搜索。

在粒子群算法中,问题的潜在解被表示为一群粒子。每个粒子代表一个候选解,并根据其自身的经验和群体的信息进行移动和调整。粒子的位置表示候选解的特征向量,速度表示粒子在搜索空间中的移动方向和速度。

粒子群算法广泛应用于各种优化问题,如函数优化、神经网络训练、组合优化等。它是一种简单且易于实现的优化算法,具有全局搜索能力和较好的收敛性

请添加图片描述

1. 简介

1.1 概念

1995年,美国学者Kennedy和Eberhart共同提出了粒子群算法,其基本思想源于对鸟类群体行为进行建模与仿真的研究结果的启发[1]。

是不是也可以叫“鸟群算法”,:)

粒子群优化算法(PSO:Particle swarm optimization) 是一种进化计算技术。源于对鸟群捕食的行为研究。它的核心思想是利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得问题的可行解。

PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。

1.2 直观理解

场景:一群鸟在搜索实物,假设:

  1. 所有的鸟都不知道食物在哪
  2. 它们知道自己的位置距离食物有多远
  3. 它们知道离实物最近的鸟的位置

然后鸟会怎么做?

每一只鸟会根据“自己的位置”和“群体最近的位置”移动到一个新的位置,不断重复这个过程,直到找到食物。

image.png

主要有三部分组成:

  • 这只鸟的历史最佳位置
  • 离食物最近的鸟的位置
  • 上一步的惯性

所涉及到参数:

  • c1:个体学习因子,也称为个体加速因子
  • c2:社会学习因子,也称为社会加速因子
  • r1、r2:随机数0~1
  • w:惯性权重,也称为惯性系数

iShot_2022-10-28_13.02.59.png

这只鸟d步所在的位置 = 上一步的位置 + 上一步的速度*运动时间

x d = x d − 1 + v d − 1 ∗ t x_d = x_{d-1} + v_{d-1}*t xd=xd1+vd1t

这只鸟d步的速度 = 上一步的速度惯性 + 自我认知部分 + 社会认知部分

v d = w ∗ v d − 1 + c 1 ∗ r 1 ∗ ( p h e s t d − x d ) + c 2 ∗ r 2 ∗ ( g b e s t d − x d ) v_d = w*v_{d-1} + c_1*r_1 * (phest_d -x_d) + c_2*r_2*(gbest_d - x_d) vd=wvd1+c1r1(phestdxd)+c2r2(gbestdxd)

1.3 概念

  • 粒子:优化问题的候选解
  • 位置:候选解所在的位置
  • 速度:候选解移动的速度
  • 适应度:评价粒子的优劣,一般设置为目标函数值
  • 个体最佳位置:单个粒子迄今为止找到的最佳位置
  • 群体最佳位置:所有粒子迄今为止找到的最佳位置

2. 算法流程

  1. 初始化: 随机生成一群粒子的初始位置和速度,并初始化最佳个体位置和最佳群体位置。
  2. **评估: ** 计算每个粒子的适应度,即目标函数值。
  3. 更新最佳位置: 将每个粒子的当前位置与其历史最佳位置进行比较,并更新个体最佳位置和群体最佳位置。
  4. 更新速度和位置: 根据个体最佳位置和群体最佳位置,以及一些权重和随机因素,更新粒子的速度和位置。
  5. 终止条件判断: 检查是否满足停止条件,例如达到最大迭代次数或目标函数值满足要求。
  6. 迭代: 如果终止条件未满足,则重复步骤3至5,直到满足终止条件。

image

2.1 公式

2.1.1 符号说明

  • n: 粒子个数
  • c 1 c_1 c1 : 个体学习因子
  • c 2 c_2 c2 : 社会学习因子
  • w: 速度惯性权重
  • v i d v_i^d vid : 第i个粒子的第d次迭代时的速度
  • x i d x_i^d xid : 第i个粒子的第d次迭代时的位置
  • f ( x ) f(x) f(x) : 在x位置的实用度
  • p b e s t i d pbest_i^d pbestid : 第i个粒子迭代到d次为止的最好位置
  • g b e s t i d gbest_i^d gbestid : 所有粒子迭代到d次为止最好的位置

2.1.2 速度公式

这只鸟第d步的速度 = 上一步自身的速度惯性 + 自我认知部分 + 社会认知部分

v i d = w ∗ v i d − 1 + c 1 ∗ r 1 ∗ ( p b e s t i d − x i d ) + c 2 ∗ r 2 ∗ ( g b s e t i d − x i d ) v_i^d = w*v_i^{d-1} + c_1*r_1*(pbest_i^d - x_i^d) + c_2*r_2 * (gbset_i^d - x_i^d) vid=wvid1+c1r1(pbestidxid)+c2r2(gbsetidxid)

说明:

  • 学习因子一般取2
  • 惯性权重一般取0.9~1.2

2.1.3 位置公式

这只鸟第d步所在的位置 = 第d-1步所在位置 + 第d-1步的速度*运动时间t(每一步的运动时间一般取1)

x i d + 1 = x i d + v i d x_i^{d+1} = x_i^d + v_i^d xid+1=xid+vid

3. 案例

3.1 案例一:一元函数最大值

求函数 y = 11 s i n ( x ) + 7 c o s ( 5 x ) y = 11sin(x) + 7cos(5x) y=11sin(x)+7cos(5x) 在[-3,3]内的最大值,

matlab代码如下:

%% 粒子群算法PSO: 求解函数y = 11*sin(x) + 7*cos(5*x)在[-3,3]内的最大值(动画演示)
clear; clc

%% 绘制函数的图形
x = -3:0.01:3;
y = 11*sin(x) + 7*cos(5*x);
figure(1)
plot(x,y,'b-')
title('y = 11*sin(x) + 7*cos(5*x)')
hold on  % 不关闭图形,继续在上面画图

%% 粒子群算法中的预设参数(参数的设置不是固定的,可以适当修改)
n = 10; % 粒子数量
narvs = 1; % 变量个数
c1 = 2;  % 每个粒子的个体学习因子,也称为个体加速常数
c2 = 2;  % 每个粒子的社会学习因子,也称为社会加速常数
w = 0.9;  % 惯性权重
K = 50;  % 迭代的次数
vmax = 1.2; % 粒子的最大速度
x_lb = -3; % x的下界
x_ub = 3; % x的上界

%% 初始化粒子的位置和速度
x = zeros(n,narvs);
for i = 1: narvs
    x(:,i) = x_lb(i) + (x_ub(i)-x_lb(i))*rand(n,1);    % 随机初始化粒子所在的位置在定义域内
end
v = -vmax + 2*vmax .* rand(n,narvs);  % 随机初始化粒子的速度(这里我们设置为[-vmax,vmax])
%  注意:这种写法只支持2017及之后的Matlab,老版本的同学请自己使用repmat函数将向量扩充为矩阵后再运算。
% 即:v = -repmat(vmax, n, 1) + 2*repmat(vmax, n, 1) .* rand(n,narvs);  
% 注意:x的初始化也可以用一行写出来:  x = x_lb + (x_ub-x_lb).*rand(n,narvs) ,原理和v的计算一样
% 老版本同学可以用x = repmat(x_lb, n, 1) + repmat((x_ub-x_lb), n, 1).*rand(n,narvs) 

%% 计算适应度
fit = zeros(n,1);  % 初始化这n个粒子的适应度全为0
for i = 1:n  % 循环整个粒子群,计算每一个粒子的适应度
    fit(i) = Obj_fun1(x(i,:));   % 调用Obj_fun1函数来计算适应度(这里写成x(i,:)主要是为了和以后遇到的多元函数互通)
end
pbest = x;   % 初始化这n个粒子迄今为止找到的最佳位置(是一个n*narvs的向量)
ind = find(fit == max(fit), 1);  % 找到适应度最大的那个粒子的下标
gbest = x(ind,:);  % 定义所有粒子迄今为止找到的最佳位置(是一个1*narvs的向量)

%% 在图上标上这n个粒子的位置用于演示
h = scatter(x,fit,80,'*r');  % scatter是绘制二维散点图的函数,80是我设置的散点显示的大小(这里返回h是为了得到图形的句柄,未来我们对其位置进行更新)

%% 循环k次体:更新粒子速度和位置
fitnessbest = ones(K,1);  % 初始化每次迭代得到的最佳的适应度
for d = 1:K  % 开始迭代,一共迭代K次
    for i = 1:n   % 依次更新第i个粒子的速度与位置
        v(i,:) = w*v(i,:) + c1*rand(1)*(pbest(i,:) - x(i,:)) + c2*rand(1)*(gbest - x(i,:));  % 更新第i个粒子的速度
        % 如果粒子的速度超过了最大速度限制,就对其进行调整
        for j = 1: narvs
            if v(i,j) < -vmax(j)
                v(i,j) = -vmax(j);
            elseif v(i,j) > vmax(j)
                v(i,j) = vmax(j);
            end
        end
        x(i,:) = x(i,:) + v(i,:); % 更新第i个粒子的位置
        % 如果粒子的位置超出了定义域,就对其进行调整
        for j = 1: narvs
            if x(i,j) < x_lb(j)
                x(i,j) = x_lb(j);
            elseif x(i,j) > x_ub(j)
                x(i,j) = x_ub(j);
            end
        end
        fit(i) = Obj_fun1(x(i,:));  % 重新计算第i个粒子的适应度
        if fit(i) > Obj_fun1(pbest(i,:))   % 如果第i个粒子的适应度大于这个粒子迄今为止找到的最佳位置对应的适应度
            pbest(i,:) = x(i,:);   % 那就更新第i个粒子迄今为止找到的最佳位置
        end
        if  fit(i) > Obj_fun1(gbest)  % 如果第i个粒子的适应度大于所有的粒子迄今为止找到的最佳位置对应的适应度
            gbest = pbest(i,:);   % 那就更新所有粒子迄今为止找到的最佳位置
        end
    end
    fitnessbest(d) = Obj_fun1(gbest);  % 更新第d次迭代得到的最佳的适应度
    pause(0.1)  % 暂停0.1s
    h.XData = x;  % 更新散点图句柄的x轴的数据(此时粒子的位置在图上发生了变化)
    h.YData = fit; % 更新散点图句柄的y轴的数据(此时粒子的位置在图上发生了变化)
end

figure(2)
plot(fitnessbest)  % 绘制出每次迭代最佳适应度的变化图
xlabel('迭代次数');
disp('最佳的位置是:'); disp(gbest)
disp('此时最优值是:'); disp(Obj_fun1(gbest))

code1.gif

3.2 案例二:二元函数最小值

matlab代码如下:

%% 粒子群算法PSO: 求解函数y = x1^2+x2^2-x1*x2-10*x1-4*x2+60在[-15,15]内的最小值(动画演示)
clear; clc

%% 绘制函数的图形
x1 = -15:1:15;
x2 = -15:1:15;
[x1,x2] = meshgrid(x1,x2);
y = x1.^2 + x2.^2 - x1.*x2 - 10*x1 - 4*x2 + 60;
mesh(x1,x2,y)
xlabel('x1');  ylabel('x2');  zlabel('y');  % 加上坐标轴的标签
axis vis3d % 冻结屏幕高宽比,使得一个三维对象的旋转不会改变坐标轴的刻度显示
hold on  % 不关闭图形,继续在上面画图

%% 粒子群算法中的预设参数(参数的设置不是固定的,可以适当修改)
n = 30; % 粒子数量
narvs = 2; % 变量个数
c1 = 2;  % 每个粒子的个体学习因子,也称为个体加速常数
c2 = 2;  % 每个粒子的社会学习因子,也称为社会加速常数
w = 0.9;  % 惯性权重
K = 100;  % 迭代的次数
vmax = [6 6]; % 粒子的最大速度
x_lb = [-15 -15]; % x的下界
x_ub = [15 15]; % x的上界

%% 初始化粒子的位置和速度
x = zeros(n,narvs);
for i = 1: narvs
    x(:,i) = x_lb(i) + (x_ub(i)-x_lb(i))*rand(n,1);    % 随机初始化粒子所在的位置在定义域内
end
v = -vmax + 2*vmax .* rand(n,narvs);  % 随机初始化粒子的速度(这里我们设置为[-vmax,vmax])
%  注意:这种写法只支持2017及之后的Matlab,老版本的同学请自己使用repmat函数将向量扩充为矩阵后再运算。
% 即:v = -repmat(vmax, n, 1) + 2*repmat(vmax, n, 1) .* rand(n,narvs);  
% 注意:x的初始化也可以用一行写出来:  x = x_lb + (x_ub-x_lb).*rand(n,narvs) ,原理和v的计算一样
% 老版本同学可以用x = repmat(x_lb, n, 1) + repmat((x_ub-x_lb), n, 1).*rand(n,narvs) 


%% 计算适应度(注意,因为是最小化问题,所以适应度越小越好)
fit = zeros(n,1);  % 初始化这n个粒子的适应度全为0
for i = 1:n  % 循环整个粒子群,计算每一个粒子的适应度
    fit(i) = Obj_fun2(x(i,:));   % 调用Obj_fun2函数来计算适应度
end 
pbest = x;   % 初始化这n个粒子迄今为止找到的最佳位置(是一个n*narvs的向量)
ind = find(fit == min(fit), 1);  % 找到适应度最小的那个粒子的下标
gbest = x(ind,:);  % 定义所有粒子迄今为止找到的最佳位置(是一个1*narvs的向量)

%% 在图上标上这n个粒子的位置用于演示
h = scatter3(x(:,1),x(:,2),fit,'*r');  % scatter3是绘制三维散点图的函数(这里返回h是为了得到图形的句柄,未来我们对其位置进行更新)

%% 迭代K次来更新速度与位置
fitnessbest = ones(K,1);  % 初始化每次迭代得到的最佳的适应度
for d = 1:K  % 开始迭代,一共迭代K次
    for i = 1:n   % 依次更新第i个粒子的速度与位置
        v(i,:) = w*v(i,:) + c1*rand(1)*(pbest(i,:) - x(i,:)) + c2*rand(1)*(gbest - x(i,:));  % 更新第i个粒子的速度
        % 如果粒子的速度超过了最大速度限制,就对其进行调整
        for j = 1: narvs
            if v(i,j) < -vmax(j)
                v(i,j) = -vmax(j);
            elseif v(i,j) > vmax(j)
                v(i,j) = vmax(j);
            end
        end
        x(i,:) = x(i,:) + v(i,:); % 更新第i个粒子的位置
        % 如果粒子的位置超出了定义域,就对其进行调整
        for j = 1: narvs
            if x(i,j) < x_lb(j)
                x(i,j) = x_lb(j);
            elseif x(i,j) > x_ub(j)
                x(i,j) = x_ub(j);
            end
        end
        fit(i) = Obj_fun2(x(i,:));  % 重新计算第i个粒子的适应度
        if fit(i) < Obj_fun2(pbest(i,:))   % 如果第i个粒子的适应度小于这个粒子迄今为止找到的最佳位置对应的适应度
           pbest(i,:) = x(i,:);   % 那就更新第i个粒子迄今为止找到的最佳位置
        end
        if  fit(i) < Obj_fun2(gbest)  % 如果第i个粒子的适应度小于所有的粒子迄今为止找到的最佳位置对应的适应度
            gbest = pbest(i,:);   % 那就更新所有粒子迄今为止找到的最佳位置
        end
    end
    fitnessbest(d) = Obj_fun2(gbest);  % 更新第d次迭代得到的最佳的适应度
    pause(0.1)  % 暂停0.1s
    h.XData = x(:,1);  % 更新散点图句柄的x轴的数据(此时粒子的位置在图上发生了变化)
    h.YData = x(:,2);   % 更新散点图句柄的y轴的数据(此时粒子的位置在图上发生了变化)
    h.ZData = fit;  % 更新散点图句柄的z轴的数据(此时粒子的位置在图上发生了变化)
end

figure(2) 
plot(fitnessbest)  % 绘制出每次迭代最佳适应度的变化图
xlabel('迭代次数');
disp('最佳的位置是:'); disp(gbest)
disp('此时最优值是:'); disp(Obj_fun2(gbest))

code2.gif

3.3 案例三:思维函数优化

在这里插入图片描述

python 代码如下:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D


def fit_fun(x):  # 适应函数
    return sum(100.0 * (x[0][1:] - x[0][:-1] ** 2.0) ** 2.0 + (1 - x[0][:-1]) ** 2.0)


class Particle:
    # 初始化
    def __init__(self, x_max, max_vel, dim):
        self.__pos = np.random.uniform(-x_max, x_max, (1, dim))  # 粒子的位置
        self.__vel = np.random.uniform(-max_vel, max_vel, (1, dim))  # 粒子的速度
        self.__bestPos = np.zeros((1, dim))  # 粒子最好的位置
        self.__fitnessValue = fit_fun(self.__pos)  # 适应度函数值

    def set_pos(self, value):
        self.__pos = value

    def get_pos(self):
        return self.__pos

    def set_best_pos(self, value):
        self.__bestPos = value

    def get_best_pos(self):
        return self.__bestPos

    def set_vel(self, value):
        self.__vel = value

    def get_vel(self):
        return self.__vel

    def set_fitness_value(self, value):
        self.__fitnessValue = value

    def get_fitness_value(self):
        return self.__fitnessValue


class PSO:
    def __init__(self, dim, size, iter_num, x_max, max_vel, tol, best_fitness_value=float('Inf'), C1=2, C2=2, W=1):
        self.C1 = C1
        self.C2 = C2
        self.W = W
        self.dim = dim  # 粒子的维度
        self.size = size  # 粒子个数
        self.iter_num = iter_num  # 迭代次数
        self.x_max = x_max
        self.max_vel = max_vel  # 粒子最大速度
        self.tol = tol  # 截至条件
        self.best_fitness_value = best_fitness_value
        self.best_position = np.zeros((1, dim))  # 种群最优位置
        self.fitness_val_list = []  # 每次迭代最优适应值

        # 对种群进行初始化
        self.Particle_list = [Particle(self.x_max, self.max_vel, self.dim) for i in range(self.size)]

    def set_bestFitnessValue(self, value):
        self.best_fitness_value = value

    def get_bestFitnessValue(self):
        return self.best_fitness_value

    def set_bestPosition(self, value):
        self.best_position = value

    def get_bestPosition(self):
        return self.best_position

    # 更新速度
    def update_vel(self, part):
        vel_value = self.W * part.get_vel() + self.C1 * np.random.rand() * (part.get_best_pos() - part.get_pos()) \
                    + self.C2 * np.random.rand() * (self.get_bestPosition() - part.get_pos())
        vel_value[vel_value > self.max_vel] = self.max_vel
        vel_value[vel_value < -self.max_vel] = -self.max_vel
        part.set_vel(vel_value)

    # 更新位置
    def update_pos(self, part):
        pos_value = part.get_pos() + part.get_vel()
        part.set_pos(pos_value)
        value = fit_fun(part.get_pos())
        if value < part.get_fitness_value():
            part.set_fitness_value(value)
            part.set_best_pos(pos_value)
        if value < self.get_bestFitnessValue():
            self.set_bestFitnessValue(value)
            self.set_bestPosition(pos_value)

    def update_ndim(self):

        for i in range(self.iter_num):
            for part in self.Particle_list:
                self.update_vel(part)  # 更新速度
                self.update_pos(part)  # 更新位置
            self.fitness_val_list.append(self.get_bestFitnessValue())  # 每次迭代完把当前的最优适应度存到列表
            print('第{}次最佳适应值为{}'.format(i, self.get_bestFitnessValue()))
            if self.get_bestFitnessValue() < self.tol:
                break

        return self.fitness_val_list, self.get_bestPosition()

if __name__ == '__main__':
    # test 香蕉函数
    pso = PSO(4, 5, 10000, 30, 60, 1e-4, C1=2, C2=2, W=1)
    fit_var_list, best_pos = pso.update_ndim()
    print("最优位置:" + str(best_pos))
    print("最优解:" + str(fit_var_list[-1]))
    plt.plot(range(len(fit_var_list)), fit_var_list, alpha=0.5)
    plt.show()

image-20240117160624100

参考

[1] https://blog.csdn.net/qq_38048756/article/details/108945267

[2] https://juejin.cn/post/7159457607055310885#heading-19

[3] https://zhuanlan.zhihu.com/p/398856271

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1401100.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

csv数据导入hive表

文章目录 前言1、将csv文本文件放置hdfs目录下2、登录hive并进入到指定数据库3、创建表4、执行导入语句5、例子: 二、使用hue将csv数据导入hive表总结 前言 介绍将csv数据导入hive表 1、将csv文本文件放置hdfs目录下 2、登录hive并进入到指定数据库 3、创建表 create extern…

【Python代码】以线性模型为例,详解深度学习算法流程,包括数据生成、定义模型、损失函数、优化算法和训练

**使用带有噪声的线性模型构造数据集&#xff0c;并根据有限的数据恢复该线性模型的参数。**其中包括数据集构造、模型参数初始化、损失函数定义、定义优化算法和训练等过程。是大多数算法实现过程的一个缩影&#xff0c;理解此过程有助于在开发或改进算法时更深刻了解其算法的…

C#,实用新型加强版的整数数组

疫苗要打加强针&#xff01;数组要用加强版&#xff01; 三连发 加强版整数数组源代码https://mp.csdn.net/mp_blog/creation/editor/124151056 加强版实数数组源代码https://mp.csdn.net/mp_blog/creation/editor/124151110 加强版泛型数组源代码https://mp.csdn.net/mp_bl…

软件资源管理下载系统全新带勋章功能 + Uniapp前端

测试环境&#xff1a;php7.1。ng1.2&#xff0c;MySQL 5.6 常见问题&#xff1a; 配置好登录后转圈圈&#xff0c;检查环境及伪静态以及后台创建好应用 上传图片不了&#xff0c;检查php拓展fileinfo 以及public文件权限 App个人主页随机背景图&#xff0c;在前端uitl文件…

Java 面向对象02 封装 (黑马)

人画圆&#xff1a;画圆这个方法应该定义在园这个类里面。 人关门&#xff1a;是人给了门一个作用力&#xff0c;然后门自己关上了门&#xff0c;所以关门的方法是在门的类里面 封装对象的好处&#xff1a; 调用Java自带的方法举例实现&#xff1a; 在测试类中&#xff0c;对其…

Java中验证码功能的解决方案

目录​​​​​​​ 1、前言 2、随机数字验证码 2.1 使用Java的Random类生成随机数字 2.2 使用Java的Graphics2D类在图片上绘制验证码 3、字符验证码 3.1 生成包含随机字符的字符串 3.2 使用Java的Graphics2D类在图片上绘制验证码 ​​​​​​​​​​​​​​4、数学…

【设计模式】代理模式例子解析

代理模式&#xff0c;顾名思义&#xff0c;就是我们在需要访问一个类时&#xff0c;并不直接调用这个类&#xff0c;而是通过一个"代理"来间接地实现这个过程。 这个“代理”就像是真实对象的一个接口&#xff0c;所有的对于真实对象的操作都需要通过这个“代理”来…

IP劫持的危害分析及应对策略

在当今数字化时代&#xff0c;网络安全问题备受关注&#xff0c;其中IP劫持是一种常见而危险的威胁。本文将深入探讨IP劫持的危害&#xff0c;并提供一些有效的应对策略。 第一部分&#xff1a;IP劫持的定义 IP劫持是指黑客通过各种手段获取并篡改目标IP地址的控制权&#xf…

怎么提升搜狗网站排名

在当今数字化时代&#xff0c;网站排名对于品牌、企业以及个人都至关重要。而对于许多网站来说&#xff0c;搜狗搜索引擎是一个重要的流量来源。为了在搜狗上取得更好的排名&#xff0c;不仅需要优化网站内容&#xff0c;还需要巧妙运用一些工具和技巧。在本文中&#xff0c;我…

gitee码云如何提交pr

步骤 fork 源码到自己的仓库 git clone 自己的仓库 git clone xxxxxxxxxxxxxxx查看自己是否与本地仓库建立了连接 git remote -v如果没有关联&#xff0c;先关联本地仓库 git remote add origin xxxxxxxxxx //例 git remote add origin https://gitee.com/YZRDEG/DLT6…

DevEco Studio4.0/3.1预览器报错综合整理

题外话&#xff1a;额&#xff0c;这篇文章的由来&#xff0c;是在这篇文章DevEco Studio3.1报错...发布后&#xff0c;仍有人没解决预览不了的问题&#xff0c;然后就有小伙伴让我看看到底哪个地方出错了&#xff0c;为什么按照文章上的去做了&#xff0c;还是无法使用&#x…

在Qt中通过控制按钮实现登录界面密码与明码的转换

创建控件&#xff1a; 首先&#xff0c;在Qt设计师界面界面上创建QLineEdit类文本框&#xff0c;用于输入密码&#xff0c;并且实现密码与明码相互转化。 设置初始状态&#xff1a; 默认情况下&#xff0c;输入密码的文本框应该是可见的并允许用户输入。 添加切换按钮&…

计算机网络——面试问题

1 从输⼊ URL 到⻚⾯展示到底发⽣了什么&#xff1f; 1. 先检查浏览器缓存⾥是否有缓存该资源&#xff0c;如果有直接返回&#xff1b;如果没有进⼊下⼀ 步⽹络请求。 2. ⽹络请求前&#xff0c;进⾏ DNS 解析 &#xff0c;以获取请求域名的 IP地址 。 3. 浏览器与服务器…

代码随想录二刷 |回溯 | 组合

代码随想录二刷 &#xff5c;回溯 &#xff5c; 组合 题目描述解题思路代码实现 题目描述 77.组合 给定两个整数 n 和 k&#xff0c;返回 1 … n 中所有可能的 k 个数的组合。 示例: 输入: n 4, k 2 输出: [ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ] 解题思路 递归…

浅析:HarmonyOS 一次开发多端部署

万物互联时代&#xff0c;应用的设备底座将从几十亿手机扩展到数百亿设备。全新的全场景设备体验&#xff0c;正深入改变消费者的使用习惯&#xff0c; 同时应用开发者也面临设备底座从手机单设备到全场景多设备的转变&#xff0c;通过全场景多设备作为全新的底座&#xff0c;为…

Vue3+ElementUI 多选框中复选框和名字点击方法效果分离

现在的需求为 比如我点击了Option A &#xff0c;触发点击Option A的方法&#xff0c;并且复选框不会取消勾选&#xff0c;分离的方法。 <el-checkbox-group v-model"mapWork.model_checkArray.value"> <div class"naipTypeDom" v-for"item …

【GitHub项目推荐--最简洁的人脸识别库】【转载】

本项目是世界上最简洁的人脸识别库&#xff0c;你可以使用 Python 和命令行工具提取、识别、操作人脸。本项目的人脸识别是基于业内领先的 C 开源库 dlib 中的深度学习模型&#xff0c;用Labeled Faces in the Wild 人脸数据集进行测试&#xff0c;有高达 99.38% 的准确率。 …

年味渐近 其乐龍龍!2024四川省网联会年货节闪亮来袭!

1月19日&#xff0c;“其乐龍龍2024四川省网联会年货节”正式启动&#xff0c;此次活动由四川省网联会主办&#xff0c;以直播、短视频多种形式在抖音、微博、小红书等多平台同步呈现&#xff0c;旨在为广大消费者带来一场别开生面的年货盛宴&#xff0c;助力激发消费活力。 年…

1985-2022年企业级数字经济核心产业专利数据库

1985-2022年企业级数字经济核心产业专利数据库 1、时间&#xff1a;1985-2022年 2、指标&#xff1a;分类号类型、发明人、专利公开号、分类号、专利名称、主分类号、专利类型、代理机构、专利摘要、分案原申请号、申请人、优先权、专利申请号、国际申请、申请日、国际公布、…

ChatGPT时代对大数据应用的展望

前言&#xff1a; 2022年底&#xff0c;科技圈有个爆炸性新闻&#xff0c;ChatGPT的诞生&#xff0c;引发了世界范围内的震惊&#xff1b;人工智能在与人交流上有了划时代的技术突破&#xff0c;可以和人深入的理解交流&#xff0c;让许多公司和领域对这项技术有了更多遐想。对…