【RT-DETR有效改进】Google | EfficientNetV1一种超轻量又高效的网络 (附代码 + 添加教程)

news2024/11/24 11:53:07

前言

大家好,我是Snu77,这里是RT-DETR有效涨点专栏

本专栏的内容为根据ultralytics版本的RT-DETR进行改进,内容持续更新,每周更新文章数量3-10篇。

专栏以ResNet18、ResNet50为基础修改版本,同时修改内容也支持ResNet32、ResNet101和PPHGNet版本,其中ResNet为RT-DETR官方版本1:1移植过来的,参数量基本保持一致(误差很小很小),不同于ultralytics仓库版本的ResNet官方版本,同时ultralytics仓库的一些参数是和RT-DETR相冲的所以我也是会教大家调好一些参数和代码,真正意义上的跑ultralytics的和RT-DETR官方版本的无区别

👑欢迎大家订阅本专栏,一起学习RT-DETR👑  

 一、本文介绍

本文给大家带来的改进机制是Google发布的EfficientNetV1主干网络,其主要思想是通过均衡地缩放网络的深度、宽度和分辨率,以提高卷积神经网络的性能。该主干使用一个复合系数来统一地缩放网络的深度、宽度和分辨率,实现更均衡的网络扩展从而提高性能。同时我提供多种该网络的版本可以满足不同读者的需求本文首先通过介绍其主要框架原理,然后教大家如何添加该网络结构到网络模型中,并附上yaml文件和运行代码,使用该网络参数量下降百分之三十以上,精度却能提两个点!

  专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR

目录

一、本文介绍

二、EfficientNetV1的框架原理

三、EfficientNetV1的核心代码

四、手把手教你添加EfficientNetV1机制

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四

4.5 修改五

4.6 修改六

4.7 修改七 

4.8 修改八

4.9 RT-DETR不能打印计算量问题的解决

4.10 可选修改

五、EfficientNetV1的yaml文件

5.1 yaml文件

5.2 运行文件

5.3 成功训练截图

六、全文总结


二、EfficientNetV1的框架原理

官方论文地址: 官方论文地址点击即可跳转

官方代码地址: 官方代码地址点击即可跳转


EfficientNetV1的主要思想是通过均衡地缩放网络的深度、宽度和分辨率,以提高卷积神经网络的性能。这种方法采用了一个简单但有效的复合系数,统一调整所有维度。EfficientNet在多个方面优于现有的ConvNets,特别是在ImageNet数据集上,EfficientNet-B7模型在保持较小的大小和更快的推理速度的同时,达到了84.3%的顶级准确率。此外,EfficientNet还在CIFAR-100和Flowers等其他数据集上展示了出色的迁移学习性能,参数数量大大减少。

总结:EfficientNetV1的主要创新为提出了一种新的模型缩放方法,该方法使用一个复合系数来统一地缩放网络的深度、宽度和分辨率,实现更均衡的网络扩展

​这张图展示了EfficientNet提出的模型缩放方法。图中(a)表示基线网络,而图(b)-(d)表示传统的缩放方法,只增加网络的一个维度:宽度、深度或分辨率。图(e)展示了EfficientNet的创新之处,即复合缩放方法,它使用固定比例同时均匀地缩放网络的所有三个维度。


三、EfficientNetV1的核心代码

import re
import math
import collections
from functools import partial
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils import model_zoo

__all__ = ['efficient']

# Parameters for the entire model (stem, all blocks, and head)
GlobalParams = collections.namedtuple('GlobalParams', [
    'width_coefficient', 'depth_coefficient', 'image_size', 'dropout_rate',
    'num_classes', 'batch_norm_momentum', 'batch_norm_epsilon',
    'drop_connect_rate', 'depth_divisor', 'min_depth', 'include_top'])

# Parameters for an individual model block
BlockArgs = collections.namedtuple('BlockArgs', [
    'num_repeat', 'kernel_size', 'stride', 'expand_ratio',
    'input_filters', 'output_filters', 'se_ratio', 'id_skip'])

# Set GlobalParams and BlockArgs's defaults
GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields)

# Swish activation function
if hasattr(nn, 'SiLU'):
    Swish = nn.SiLU
else:
    # For compatibility with old PyTorch versions
    class Swish(nn.Module):
        def forward(self, x):
            return x * torch.sigmoid(x)


# A memory-efficient implementation of Swish function
class SwishImplementation(torch.autograd.Function):
    @staticmethod
    def forward(ctx, i):
        result = i * torch.sigmoid(i)
        ctx.save_for_backward(i)
        return result

    @staticmethod
    def backward(ctx, grad_output):
        i = ctx.saved_tensors[0]
        sigmoid_i = torch.sigmoid(i)
        return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))


class MemoryEfficientSwish(nn.Module):
    def forward(self, x):
        return SwishImplementation.apply(x)


def round_filters(filters, global_params):
    """Calculate and round number of filters based on width multiplier.
       Use width_coefficient, depth_divisor and min_depth of global_params.

    Args:
        filters (int): Filters number to be calculated.
        global_params (namedtuple): Global params of the model.

    Returns:
        new_filters: New filters number after calculating.
    """
    multiplier = global_params.width_coefficient
    if not multiplier:
        return filters
    # TODO: modify the params names.
    #       maybe the names (width_divisor,min_width)
    #       are more suitable than (depth_divisor,min_depth).
    divisor = global_params.depth_divisor
    min_depth = global_params.min_depth
    filters *= multiplier
    min_depth = min_depth or divisor  # pay attention to this line when using min_depth
    # follow the formula transferred from official TensorFlow implementation
    new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor)
    if new_filters < 0.9 * filters:  # prevent rounding by more than 10%
        new_filters += divisor
    return int(new_filters)


def round_repeats(repeats, global_params):
    """Calculate module's repeat number of a block based on depth multiplier.
       Use depth_coefficient of global_params.

    Args:
        repeats (int): num_repeat to be calculated.
        global_params (namedtuple): Global params of the model.

    Returns:
        new repeat: New repeat number after calculating.
    """
    multiplier = global_params.depth_coefficient
    if not multiplier:
        return repeats
    # follow the formula transferred from official TensorFlow implementation
    return int(math.ceil(multiplier * repeats))


def drop_connect(inputs, p, training):
    """Drop connect.

    Args:
        input (tensor: BCWH): Input of this structure.
        p (float: 0.0~1.0): Probability of drop connection.
        training (bool): The running mode.

    Returns:
        output: Output after drop connection.
    """
    assert 0 <= p <= 1, 'p must be in range of [0,1]'

    if not training:
        return inputs

    batch_size = inputs.shape[0]
    keep_prob = 1 - p

    # generate binary_tensor mask according to probability (p for 0, 1-p for 1)
    random_tensor = keep_prob
    random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device)
    binary_tensor = torch.floor(random_tensor)

    output = inputs / keep_prob * binary_tensor
    return output


def get_width_and_height_from_size(x):
    """Obtain height and width from x.

    Args:
        x (int, tuple or list): Data size.

    Returns:
        size: A tuple or list (H,W).
    """
    if isinstance(x, int):
        return x, x
    if isinstance(x, list) or isinstance(x, tuple):
        return x
    else:
        raise TypeError()


def calculate_output_image_size(input_image_size, stride):
    """Calculates the output image size when using Conv2dSamePadding with a stride.
       Necessary for static padding. Thanks to mannatsingh for pointing this out.

    Args:
        input_image_size (int, tuple or list): Size of input image.
        stride (int, tuple or list): Conv2d operation's stride.

    Returns:
        output_image_size: A list [H,W].
    """
    if input_image_size is None:
        return None
    image_height, image_width = get_width_and_height_from_size(input_image_size)
    stride = stride if isinstance(stride, int) else stride[0]
    image_height = int(math.ceil(image_height / stride))
    image_width = int(math.ceil(image_width / stride))
    return [image_height, image_width]


# Note:
# The following 'SamePadding' functions make output size equal ceil(input size/stride).
# Only when stride equals 1, can the output size be the same as input size.
# Don't be confused by their function names ! ! !

def get_same_padding_conv2d(image_size=None):
    """Chooses static padding if you have specified an image size, and dynamic padding otherwise.
       Static padding is necessary for ONNX exporting of models.

    Args:
        image_size (int or tuple): Size of the image.

    Returns:
        Conv2dDynamicSamePadding or Conv2dStaticSamePadding.
    """
    if image_size is None:
        return Conv2dDynamicSamePadding
    else:
        return partial(Conv2dStaticSamePadding, image_size=image_size)


class Conv2dDynamicSamePadding(nn.Conv2d):
    """2D Convolutions like TensorFlow, for a dynamic image size.
       The padding is operated in forward function by calculating dynamically.
    """

    # Tips for 'SAME' mode padding.
    #     Given the following:
    #         i: width or height
    #         s: stride
    #         k: kernel size
    #         d: dilation
    #         p: padding
    #     Output after Conv2d:
    #         o = floor((i+p-((k-1)*d+1))/s+1)
    # If o equals i, i = floor((i+p-((k-1)*d+1))/s+1),
    # => p = (i-1)*s+((k-1)*d+1)-i

    def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True):
        super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)
        self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2

    def forward(self, x):
        ih, iw = x.size()[-2:]
        kh, kw = self.weight.size()[-2:]
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)  # change the output size according to stride ! ! !
        pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
        pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
        if pad_h > 0 or pad_w > 0:
            x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
        return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)


class Conv2dStaticSamePadding(nn.Conv2d):
    """2D Convolutions like TensorFlow's 'SAME' mode, with the given input image size.
       The padding mudule is calculated in construction function, then used in forward.
    """

    # With the same calculation as Conv2dDynamicSamePadding

    def __init__(self, in_channels, out_channels, kernel_size, stride=1, image_size=None, **kwargs):
        super().__init__(in_channels, out_channels, kernel_size, stride, **kwargs)
        self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2

        # Calculate padding based on image size and save it
        assert image_size is not None
        ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size
        kh, kw = self.weight.size()[-2:]
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
        pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
        pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
        if pad_h > 0 or pad_w > 0:
            self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2,
                                                pad_h // 2, pad_h - pad_h // 2))
        else:
            self.static_padding = nn.Identity()

    def forward(self, x):
        x = self.static_padding(x)
        x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
        return x


def get_same_padding_maxPool2d(image_size=None):
    """Chooses static padding if you have specified an image size, and dynamic padding otherwise.
       Static padding is necessary for ONNX exporting of models.

    Args:
        image_size (int or tuple): Size of the image.

    Returns:
        MaxPool2dDynamicSamePadding or MaxPool2dStaticSamePadding.
    """
    if image_size is None:
        return MaxPool2dDynamicSamePadding
    else:
        return partial(MaxPool2dStaticSamePadding, image_size=image_size)


class MaxPool2dDynamicSamePadding(nn.MaxPool2d):
    """2D MaxPooling like TensorFlow's 'SAME' mode, with a dynamic image size.
       The padding is operated in forward function by calculating dynamically.
    """

    def __init__(self, kernel_size, stride, padding=0, dilation=1, return_indices=False, ceil_mode=False):
        super().__init__(kernel_size, stride, padding, dilation, return_indices, ceil_mode)
        self.stride = [self.stride] * 2 if isinstance(self.stride, int) else self.stride
        self.kernel_size = [self.kernel_size] * 2 if isinstance(self.kernel_size, int) else self.kernel_size
        self.dilation = [self.dilation] * 2 if isinstance(self.dilation, int) else self.dilation

    def forward(self, x):
        ih, iw = x.size()[-2:]
        kh, kw = self.kernel_size
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
        pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
        pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
        if pad_h > 0 or pad_w > 0:
            x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
        return F.max_pool2d(x, self.kernel_size, self.stride, self.padding,
                            self.dilation, self.ceil_mode, self.return_indices)


class MaxPool2dStaticSamePadding(nn.MaxPool2d):
    """2D MaxPooling like TensorFlow's 'SAME' mode, with the given input image size.
       The padding mudule is calculated in construction function, then used in forward.
    """

    def __init__(self, kernel_size, stride, image_size=None, **kwargs):
        super().__init__(kernel_size, stride, **kwargs)
        self.stride = [self.stride] * 2 if isinstance(self.stride, int) else self.stride
        self.kernel_size = [self.kernel_size] * 2 if isinstance(self.kernel_size, int) else self.kernel_size
        self.dilation = [self.dilation] * 2 if isinstance(self.dilation, int) else self.dilation

        # Calculate padding based on image size and save it
        assert image_size is not None
        ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size
        kh, kw = self.kernel_size
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
        pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
        pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
        if pad_h > 0 or pad_w > 0:
            self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2))
        else:
            self.static_padding = nn.Identity()

    def forward(self, x):
        x = self.static_padding(x)
        x = F.max_pool2d(x, self.kernel_size, self.stride, self.padding,
                         self.dilation, self.ceil_mode, self.return_indices)
        return x


################################################################################
# Helper functions for loading model params
################################################################################

# BlockDecoder: A Class for encoding and decoding BlockArgs
# efficientnet_params: A function to query compound coefficient
# get_model_params and efficientnet:
#     Functions to get BlockArgs and GlobalParams for efficientnet
# url_map and url_map_advprop: Dicts of url_map for pretrained weights
# load_pretrained_weights: A function to load pretrained weights

class BlockDecoder(object):
    """Block Decoder for readability,
       straight from the official TensorFlow repository.
    """

    @staticmethod
    def _decode_block_string(block_string):
        """Get a block through a string notation of arguments.

        Args:
            block_string (str): A string notation of arguments.
                                Examples: 'r1_k3_s11_e1_i32_o16_se0.25_noskip'.

        Returns:
            BlockArgs: The namedtuple defined at the top of this file.
        """
        assert isinstance(block_string, str)

        ops = block_string.split('_')
        options = {}
        for op in ops:
            splits = re.split(r'(\d.*)', op)
            if len(splits) >= 2:
                key, value = splits[:2]
                options[key] = value

        # Check stride
        assert (('s' in options and len(options['s']) == 1) or
                (len(options['s']) == 2 and options['s'][0] == options['s'][1]))

        return BlockArgs(
            num_repeat=int(options['r']),
            kernel_size=int(options['k']),
            stride=[int(options['s'][0])],
            expand_ratio=int(options['e']),
            input_filters=int(options['i']),
            output_filters=int(options['o']),
            se_ratio=float(options['se']) if 'se' in options else None,
            id_skip=('noskip' not in block_string))

    @staticmethod
    def _encode_block_string(block):
        """Encode a block to a string.

        Args:
            block (namedtuple): A BlockArgs type argument.

        Returns:
            block_string: A String form of BlockArgs.
        """
        args = [
            'r%d' % block.num_repeat,
            'k%d' % block.kernel_size,
            's%d%d' % (block.strides[0], block.strides[1]),
            'e%s' % block.expand_ratio,
            'i%d' % block.input_filters,
            'o%d' % block.output_filters
        ]
        if 0 < block.se_ratio <= 1:
            args.append('se%s' % block.se_ratio)
        if block.id_skip is False:
            args.append('noskip')
        return '_'.join(args)

    @staticmethod
    def decode(string_list):
        """Decode a list of string notations to specify blocks inside the network.

        Args:
            string_list (list[str]): A list of strings, each string is a notation of block.

        Returns:
            blocks_args: A list of BlockArgs namedtuples of block args.
        """
        assert isinstance(string_list, list)
        blocks_args = []
        for block_string in string_list:
            blocks_args.append(BlockDecoder._decode_block_string(block_string))
        return blocks_args

    @staticmethod
    def encode(blocks_args):
        """Encode a list of BlockArgs to a list of strings.

        Args:
            blocks_args (list[namedtuples]): A list of BlockArgs namedtuples of block args.

        Returns:
            block_strings: A list of strings, each string is a notation of block.
        """
        block_strings = []
        for block in blocks_args:
            block_strings.append(BlockDecoder._encode_block_string(block))
        return block_strings


def efficientnet_params(model_name):
    """Map EfficientNet model name to parameter coefficients.

    Args:
        model_name (str): Model name to be queried.

    Returns:
        params_dict[model_name]: A (width,depth,res,dropout) tuple.
    """
    params_dict = {
        # Coefficients:   width,depth,res,dropout
        'efficientnet-b0': (1.0, 1.0, 224, 0.2),
        'efficientnet-b1': (1.0, 1.1, 240, 0.2),
        'efficientnet-b2': (1.1, 1.2, 260, 0.3),
        'efficientnet-b3': (1.2, 1.4, 300, 0.3),
        'efficientnet-b4': (1.4, 1.8, 380, 0.4),
        'efficientnet-b5': (1.6, 2.2, 456, 0.4),
        'efficientnet-b6': (1.8, 2.6, 528, 0.5),
        'efficientnet-b7': (2.0, 3.1, 600, 0.5),
        'efficientnet-b8': (2.2, 3.6, 672, 0.5),
        'efficientnet-l2': (4.3, 5.3, 800, 0.5),
    }
    return params_dict[model_name]


def efficientnet(width_coefficient=None, depth_coefficient=None, image_size=None,
                 dropout_rate=0.2, drop_connect_rate=0.2, num_classes=1000, include_top=True):
    """Create BlockArgs and GlobalParams for efficientnet model.

    Args:
        width_coefficient (float)
        depth_coefficient (float)
        image_size (int)
        dropout_rate (float)
        drop_connect_rate (float)
        num_classes (int)

        Meaning as the name suggests.

    Returns:
        blocks_args, global_params.
    """

    # Blocks args for the whole model(efficientnet-b0 by default)
    # It will be modified in the construction of EfficientNet Class according to model
    blocks_args = [
        'r1_k3_s11_e1_i32_o16_se0.25',
        'r2_k3_s22_e6_i16_o24_se0.25',
        'r2_k5_s22_e6_i24_o40_se0.25',
        'r3_k3_s22_e6_i40_o80_se0.25',
        'r3_k5_s11_e6_i80_o112_se0.25',
        'r4_k5_s22_e6_i112_o192_se0.25',
        'r1_k3_s11_e6_i192_o320_se0.25',
    ]
    blocks_args = BlockDecoder.decode(blocks_args)

    global_params = GlobalParams(
        width_coefficient=width_coefficient,
        depth_coefficient=depth_coefficient,
        image_size=image_size,
        dropout_rate=dropout_rate,

        num_classes=num_classes,
        batch_norm_momentum=0.99,
        batch_norm_epsilon=1e-3,
        drop_connect_rate=drop_connect_rate,
        depth_divisor=8,
        min_depth=None,
        include_top=include_top,
    )

    return blocks_args, global_params


def get_model_params(model_name, override_params):
    """Get the block args and global params for a given model name.

    Args:
        model_name (str): Model's name.
        override_params (dict): A dict to modify global_params.

    Returns:
        blocks_args, global_params
    """
    if model_name.startswith('efficientnet'):
        w, d, s, p = efficientnet_params(model_name)
        # note: all models have drop connect rate = 0.2
        blocks_args, global_params = efficientnet(
            width_coefficient=w, depth_coefficient=d, dropout_rate=p, image_size=s)
    else:
        raise NotImplementedError('model name is not pre-defined: {}'.format(model_name))
    if override_params:
        # ValueError will be raised here if override_params has fields not included in global_params.
        global_params = global_params._replace(**override_params)
    return blocks_args, global_params


# train with Standard methods
# check more details in paper(EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks)
url_map = {
    'efficientnet-b0': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth',
    'efficientnet-b1': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b1-f1951068.pth',
    'efficientnet-b2': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b2-8bb594d6.pth',
    'efficientnet-b3': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b3-5fb5a3c3.pth',
    'efficientnet-b4': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b4-6ed6700e.pth',
    'efficientnet-b5': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b5-b6417697.pth',
    'efficientnet-b6': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b6-c76e70fd.pth',
    'efficientnet-b7': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b7-dcc49843.pth',
}

# train with Adversarial Examples(AdvProp)
# check more details in paper(Adversarial Examples Improve Image Recognition)
url_map_advprop = {
    'efficientnet-b0': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b0-b64d5a18.pth',
    'efficientnet-b1': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b1-0f3ce85a.pth',
    'efficientnet-b2': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b2-6e9d97e5.pth',
    'efficientnet-b3': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b3-cdd7c0f4.pth',
    'efficientnet-b4': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b4-44fb3a87.pth',
    'efficientnet-b5': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b5-86493f6b.pth',
    'efficientnet-b6': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b6-ac80338e.pth',
    'efficientnet-b7': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b7-4652b6dd.pth',
    'efficientnet-b8': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b8-22a8fe65.pth',
}

# TODO: add the petrained weights url map of 'efficientnet-l2'


def load_pretrained_weights(model, model_name, weights_path=None, load_fc=True, advprop=False, verbose=True):
    """Loads pretrained weights from weights path or download using url.

    Args:
        model (Module): The whole model of efficientnet.
        model_name (str): Model name of efficientnet.
        weights_path (None or str):
            str: path to pretrained weights file on the local disk.
            None: use pretrained weights downloaded from the Internet.
        load_fc (bool): Whether to load pretrained weights for fc layer at the end of the model.
        advprop (bool): Whether to load pretrained weights
                        trained with advprop (valid when weights_path is None).
    """
    if isinstance(weights_path, str):
        state_dict = torch.load(weights_path)
    else:
        # AutoAugment or Advprop (different preprocessing)
        url_map_ = url_map_advprop if advprop else url_map
        state_dict = model_zoo.load_url(url_map_[model_name])

    if load_fc:
        ret = model.load_state_dict(state_dict, strict=False)
        assert not ret.missing_keys, 'Missing keys when loading pretrained weights: {}'.format(ret.missing_keys)
    else:
        state_dict.pop('_fc.weight')
        state_dict.pop('_fc.bias')
        ret = model.load_state_dict(state_dict, strict=False)
        assert set(ret.missing_keys) == set(
            ['_fc.weight', '_fc.bias']), 'Missing keys when loading pretrained weights: {}'.format(ret.missing_keys)
    assert not ret.unexpected_keys, 'Missing keys when loading pretrained weights: {}'.format(ret.unexpected_keys)

    if verbose:
        print('Loaded pretrained weights for {}'.format(model_name))


VALID_MODELS = (
    'efficientnet-b0', 'efficientnet-b1', 'efficientnet-b2', 'efficientnet-b3',
    'efficientnet-b4', 'efficientnet-b5', 'efficientnet-b6', 'efficientnet-b7',
    'efficientnet-b8',

    # Support the construction of 'efficientnet-l2' without pretrained weights
    'efficientnet-l2'
)


class MBConvBlock(nn.Module):
    """Mobile Inverted Residual Bottleneck Block.

    Args:
        block_args (namedtuple): BlockArgs, defined in utils.py.
        global_params (namedtuple): GlobalParam, defined in utils.py.
        image_size (tuple or list): [image_height, image_width].

    References:
        [1] https://arxiv.org/abs/1704.04861 (MobileNet v1)
        [2] https://arxiv.org/abs/1801.04381 (MobileNet v2)
        [3] https://arxiv.org/abs/1905.02244 (MobileNet v3)
    """

    def __init__(self, block_args, global_params, image_size=None):
        super().__init__()
        self._block_args = block_args
        self._bn_mom = 1 - global_params.batch_norm_momentum  # pytorch's difference from tensorflow
        self._bn_eps = global_params.batch_norm_epsilon
        self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1)
        self.id_skip = block_args.id_skip  # whether to use skip connection and drop connect

        # Expansion phase (Inverted Bottleneck)
        inp = self._block_args.input_filters  # number of input channels
        oup = self._block_args.input_filters * self._block_args.expand_ratio  # number of output channels
        if self._block_args.expand_ratio != 1:
            Conv2d = get_same_padding_conv2d(image_size=image_size)
            self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
            self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
            # image_size = calculate_output_image_size(image_size, 1) <-- this wouldn't modify image_size

        # Depthwise convolution phase
        k = self._block_args.kernel_size
        s = self._block_args.stride
        Conv2d = get_same_padding_conv2d(image_size=image_size)
        self._depthwise_conv = Conv2d(
            in_channels=oup, out_channels=oup, groups=oup,  # groups makes it depthwise
            kernel_size=k, stride=s, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
        image_size = calculate_output_image_size(image_size, s)

        # Squeeze and Excitation layer, if desired
        if self.has_se:
            Conv2d = get_same_padding_conv2d(image_size=(1, 1))
            num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio))
            self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
            self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)

        # Pointwise convolution phase
        final_oup = self._block_args.output_filters
        Conv2d = get_same_padding_conv2d(image_size=image_size)
        self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
        self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)
        self._swish = MemoryEfficientSwish()

    def forward(self, inputs, drop_connect_rate=None):
        """MBConvBlock's forward function.

        Args:
            inputs (tensor): Input tensor.
            drop_connect_rate (bool): Drop connect rate (float, between 0 and 1).

        Returns:
            Output of this block after processing.
        """

        # Expansion and Depthwise Convolution
        x = inputs
        if self._block_args.expand_ratio != 1:
            x = self._expand_conv(inputs)
            x = self._bn0(x)
            x = self._swish(x)

        x = self._depthwise_conv(x)
        x = self._bn1(x)
        x = self._swish(x)

        # Squeeze and Excitation
        if self.has_se:
            x_squeezed = F.adaptive_avg_pool2d(x, 1)
            x_squeezed = self._se_reduce(x_squeezed)
            x_squeezed = self._swish(x_squeezed)
            x_squeezed = self._se_expand(x_squeezed)
            x = torch.sigmoid(x_squeezed) * x

        # Pointwise Convolution
        x = self._project_conv(x)
        x = self._bn2(x)

        # Skip connection and drop connect
        input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters
        if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters:
            # The combination of skip connection and drop connect brings about stochastic depth.
            if drop_connect_rate:
                x = drop_connect(x, p=drop_connect_rate, training=self.training)
            x = x + inputs  # skip connection
        return x

    def set_swish(self, memory_efficient=True):
        """Sets swish function as memory efficient (for training) or standard (for export).

        Args:
            memory_efficient (bool): Whether to use memory-efficient version of swish.
        """
        self._swish = MemoryEfficientSwish() if memory_efficient else Swish()


class EfficientNet(nn.Module):


    def __init__(self, blocks_args=None, global_params=None):
        super().__init__()
        assert isinstance(blocks_args, list), 'blocks_args should be a list'
        assert len(blocks_args) > 0, 'block args must be greater than 0'
        self._global_params = global_params
        self._blocks_args = blocks_args

        # Batch norm parameters
        bn_mom = 1 - self._global_params.batch_norm_momentum
        bn_eps = self._global_params.batch_norm_epsilon

        # Get stem static or dynamic convolution depending on image size
        image_size = global_params.image_size
        Conv2d = get_same_padding_conv2d(image_size=image_size)

        # Stem
        in_channels = 3  # rgb
        out_channels = round_filters(32, self._global_params)  # number of output channels
        self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)
        self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)
        image_size = calculate_output_image_size(image_size, 2)

        # Build blocks
        self._blocks = nn.ModuleList([])
        for block_args in self._blocks_args:

            # Update block input and output filters based on depth multiplier.
            block_args = block_args._replace(
                input_filters=round_filters(block_args.input_filters, self._global_params),
                output_filters=round_filters(block_args.output_filters, self._global_params),
                num_repeat=round_repeats(block_args.num_repeat, self._global_params)
            )

            # The first block needs to take care of stride and filter size increase.
            self._blocks.append(MBConvBlock(block_args, self._global_params, image_size=image_size))
            image_size = calculate_output_image_size(image_size, block_args.stride)
            if block_args.num_repeat > 1:  # modify block_args to keep same output size
                block_args = block_args._replace(input_filters=block_args.output_filters, stride=1)
            for _ in range(block_args.num_repeat - 1):
                self._blocks.append(MBConvBlock(block_args, self._global_params, image_size=image_size))
                # image_size = calculate_output_image_size(image_size, block_args.stride)  # stride = 1

        # Head
        in_channels = block_args.output_filters  # output of final block
        out_channels = round_filters(1280, self._global_params)
        Conv2d = get_same_padding_conv2d(image_size=image_size)
        self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps)

        # Final linear layer
        self._avg_pooling = nn.AdaptiveAvgPool2d(1)
        if self._global_params.include_top:
            self._dropout = nn.Dropout(self._global_params.dropout_rate)
            self._fc = nn.Linear(out_channels, self._global_params.num_classes)

        # set activation to memory efficient swish by default
        self._swish = MemoryEfficientSwish()
        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
    def set_swish(self, memory_efficient=True):
        """Sets swish function as memory efficient (for training) or standard (for export).
        Args:
            memory_efficient (bool): Whether to use memory-efficient version of swish.
        """
        self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
        for block in self._blocks:
            block.set_swish(memory_efficient)

    def extract_endpoints(self, inputs):
        # """Use convolution layer to extract features
        # from reduction levels i in [1, 2, 3, 4, 5].
        #
        # Args:
        #     inputs (tensor): Input tensor.
        #
        # Returns:
        #     Dictionary of last intermediate features
        #     with reduction levels i in [1, 2, 3, 4, 5].
        #     Example:
        #         >>> import torch
        #         >>> from efficientnet.model import EfficientNet
        #         >>> inputs = torch.rand(1, 3, 224, 224)
        #         >>> model = EfficientNet.from_pretrained('efficientnet-b0')
        #         >>> endpoints = model.extract_endpoints(inputs)
        #         >>> print(endpoints['reduction_1'].shape)  # torch.Size([1, 16, 112, 112])
        #         >>> print(endpoints['reduction_2'].shape)  # torch.Size([1, 24, 56, 56])
        #         >>> print(endpoints['reduction_3'].shape)  # torch.Size([1, 40, 28, 28])
        #         >>> print(endpoints['reduction_4'].shape)  # torch.Size([1, 112, 14, 14])
        #         >>> print(endpoints['reduction_5'].shape)  # torch.Size([1, 320, 7, 7])
        #         >>> print(endpoints['reduction_6'].shape)  # torch.Size([1, 1280, 7, 7])
        # """
        endpoints = dict()

        # Stem
        x = self._swish(self._bn0(self._conv_stem(inputs)))
        prev_x = x

        # Blocks
        for idx, block in enumerate(self._blocks):
            drop_connect_rate = self._global_params.drop_connect_rate
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / len(self._blocks)  # scale drop connect_rate
            x = block(x, drop_connect_rate=drop_connect_rate)
            if prev_x.size(2) > x.size(2):
                endpoints['reduction_{}'.format(len(endpoints) + 1)] = prev_x
            elif idx == len(self._blocks) - 1:
                endpoints['reduction_{}'.format(len(endpoints) + 1)] = x
            prev_x = x

        # Head
        x = self._swish(self._bn1(self._conv_head(x)))
        endpoints['reduction_{}'.format(len(endpoints) + 1)] = x

        return endpoints

    def forward(self, inputs):
        """use convolution layer to extract feature .

        Args:
            inputs (tensor): Input tensor.

        Returns:
            Output of the final convolution
            layer in the efficientnet model.
        """
        # Stem
        x = self._swish(self._bn0(self._conv_stem(inputs)))
        unique_tensors = {}
        # Blocks
        for idx, block in enumerate(self._blocks):
            drop_connect_rate = self._global_params.drop_connect_rate
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / len(self._blocks)  # scale drop connect_rate
            x = block(x, drop_connect_rate=drop_connect_rate)
            width, height = x.shape[2], x.shape[3]
            unique_tensors[(width, height)] = x
        result_list = list(unique_tensors.values())[-4:]
        # Head
        return result_list

    @classmethod
    def from_name(cls, model_name, in_channels=3, **override_params):
        """Create an efficientnet model according to name.

        Args:
            model_name (str): Name for efficientnet.
            in_channels (int): Input data's channel number.
            override_params (other key word params):
                Params to override model's global_params.
                Optional key:
                    'width_coefficient', 'depth_coefficient',
                    'image_size', 'dropout_rate',
                    'num_classes', 'batch_norm_momentum',
                    'batch_norm_epsilon', 'drop_connect_rate',
                    'depth_divisor', 'min_depth'

        Returns:
            An efficientnet model.
        """
        cls._check_model_name_is_valid(model_name)
        blocks_args, global_params = get_model_params(model_name, override_params)
        model = cls(blocks_args, global_params)
        model._change_in_channels(in_channels)
        return model

    @classmethod
    def from_pretrained(cls, model_name, weights_path=None, advprop=False,
                        in_channels=3, num_classes=1000, **override_params):
        """Create an efficientnet model according to name.

        Args:
            model_name (str): Name for efficientnet.
            weights_path (None or str):
                str: path to pretrained weights file on the local disk.
                None: use pretrained weights downloaded from the Internet.
            advprop (bool):
                Whether to load pretrained weights
                trained with advprop (valid when weights_path is None).
            in_channels (int): Input data's channel number.
            num_classes (int):
                Number of categories for classification.
                It controls the output size for final linear layer.
            override_params (other key word params):
                Params to override model's global_params.
                Optional key:
                    'width_coefficient', 'depth_coefficient',
                    'image_size', 'dropout_rate',
                    'batch_norm_momentum',
                    'batch_norm_epsilon', 'drop_connect_rate',
                    'depth_divisor', 'min_depth'

        Returns:
            A pretrained efficientnet model.
        """
        model = cls.from_name(model_name, num_classes=num_classes, **override_params)
        load_pretrained_weights(model, model_name, weights_path=weights_path,
                                load_fc=(num_classes == 1000), advprop=advprop)
        model._change_in_channels(in_channels)
        return model

    @classmethod
    def get_image_size(cls, model_name):
        """Get the input image size for a given efficientnet model.

        Args:
            model_name (str): Name for efficientnet.

        Returns:
            Input image size (resolution).
        """
        cls._check_model_name_is_valid(model_name)
        _, _, res, _ = efficientnet_params(model_name)
        return res

    @classmethod
    def _check_model_name_is_valid(cls, model_name):
        """Validates model name.

        Args:
            model_name (str): Name for efficientnet.

        Returns:
            bool: Is a valid name or not.
        """
        if model_name not in VALID_MODELS:
            raise ValueError('model_name should be one of: ' + ', '.join(VALID_MODELS))

    def _change_in_channels(self, in_channels):
        """Adjust model's first convolution layer to in_channels, if in_channels not equals 3.

        Args:
            in_channels (int): Input data's channel number.
        """
        if in_channels != 3:
            Conv2d = get_same_padding_conv2d(image_size=self._global_params.image_size)
            out_channels = round_filters(32, self._global_params)
            self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False)


def efficient(model_name='efficientnet-b0', pretrained=False):
    if pretrained:
        model = EfficientNet.from_pretrained('{}'.format(model_name))
    else:
        model = EfficientNet.from_name('{}'.format(model_name))
    return model

if __name__ == "__main__":


    # VALID_MODELS = (
    #     'efficientnet-b0', 'efficientnet-b1', 'efficientnet-b2', 'efficientnet-b3',
    #     'efficientnet-b4', 'efficientnet-b5', 'efficientnet-b6', 'efficientnet-b7',
    #     'efficientnet-b8',
    #     # Support the construction of 'efficientnet-l2' without pretrained weights
    #     'efficientnet-l2'
    # )

    # Generating Sample image
    image_size = (1, 3, 640, 640)
    image = torch.rand(*image_size)

    # Model
    model = efficient('efficientnet-b0')

    out = model(image)
    print(len(out))

四、手把手教你添加EfficientNetV1机制

下面教大家如何修改该网络结构,主干网络结构的修改步骤比较复杂,我也会将task.py文件上传到CSDN的文件中,大家如果自己修改不正确,可以尝试用我的task.py文件替换你的,然后只需要修改其中的第1、2、3、5步即可。

⭐修改过程中大家一定要仔细⭐


4.1 修改一

首先我门中到如下“ultralytics/nn”的目录,我们在这个目录下在创建一个新的目录,名字为'Addmodules'(此文件之后就用于存放我们的所有改进机制),之后我们在创建的目录内创建一个新的py文件复制粘贴进去 ,可以根据文章改进机制来起,这里大家根据自己的习惯命名即可。


4.2 修改二 

第二步我们在我们创建的目录内创建一个新的py文件名字为'__init__.py'(只需要创建一个即可),然后在其内部导入我们本文的改进机制即可,其余代码均为未发大家没有不用理会!


4.3 修改三 

第三步我门中到如下文件'ultralytics/nn/tasks.py'然后在开头导入我们的所有改进机制(如果你用了我多个改进机制,这一步只需要修改一次即可)


4.4 修改四

添加如下两行代码!!!


4.5 修改五

找到七百多行大概把具体看图片,按照图片来修改就行,添加红框内的部分,注意没有()只是函数名(此处我的文件里已经添加很多了后期都会发出来,大家没有的不用理会即可)。

        elif m in {自行添加对应的模型即可,下面都是一样的}:
            m = m(*args)
            c2 = m.width_list  # 返回通道列表
            backbone = True


4.6 修改六

用下面的代码替换红框内的内容。 

if isinstance(c2, list):
    m_ = m
    m_.backbone = True
else:
    m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
    t = str(m)[8:-2].replace('__main__.', '')  # module type
m.np = sum(x.numel() for x in m_.parameters())  # number params
m_.i, m_.f, m_.type = i + 4 if backbone else i, f, t  # attach index, 'from' index, type
if verbose:
    LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print
save.extend(
    x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
layers.append(m_)
if i == 0:
    ch = []
if isinstance(c2, list):
    ch.extend(c2)
    if len(c2) != 5:
        ch.insert(0, 0)
else:
    ch.append(c2)


4.7 修改七 

修改七这里非常要注意,不是文件开头YOLOv8的那predict,是400+行的RTDETR的predict!!!初始模型如下,用我给的代码替换即可!!!

代码如下->

 def predict(self, x, profile=False, visualize=False, batch=None, augment=False, embed=None):
        """
        Perform a forward pass through the model.

        Args:
            x (torch.Tensor): The input tensor.
            profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
            visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
            batch (dict, optional): Ground truth data for evaluation. Defaults to None.
            augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.
            embed (list, optional): A list of feature vectors/embeddings to return.

        Returns:
            (torch.Tensor): Model's output tensor.
        """
        y, dt, embeddings = [], [], []  # outputs
        for m in self.model[:-1]:  # except the head part
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                if len(x) != 5:  # 0 - 5
                    x.insert(0, None)
                for index, i in enumerate(x):
                    if index in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1]  # 最后一个输出传给下一层
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        head = self.model[-1]
        x = head([y[j] for j in head.f], batch)  # head inference
        return x

4.8 修改八

我们将下面的s用640替换即可,这一步也是部分的主干可以不修改,但有的不修改就会报错,所以我们还是修改一下。


4.9 RT-DETR不能打印计算量问题的解决

计算的GFLOPs计算异常不打印,所以需要额外修改一处, 我们找到如下文件'ultralytics/utils/torch_utils.py'文件内有如下的代码按照如下的图片进行修改,大家看好函数就行,其中红框的640可能和你的不一样, 然后用我给的代码替换掉整个代码即可。

def get_flops(model, imgsz=640):
    """Return a YOLO model's FLOPs."""
    try:
        model = de_parallel(model)
        p = next(model.parameters())
        # stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32  # max stride
        stride = 640
        im = torch.empty((1, 3, stride, stride), device=p.device)  # input image in BCHW format
        flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1E9 * 2 if thop else 0  # stride GFLOPs
        imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz]  # expand if int/float
        return flops * imgsz[0] / stride * imgsz[1] / stride  # 640x640 GFLOPs
    except Exception:
        return 0


4.10 可选修改

有些读者的数据集部分图片比较特殊,在验证的时候会导致形状不匹配的报错,如果大家在验证的时候报错形状不匹配的错误可以固定验证集的图片尺寸,方法如下 ->

找到下面这个文件ultralytics/models/yolo/detect/train.py然后其中有一个类是DetectionTrainer class中的build_dataset函数中的一个参数rect=mode == 'val'改为rect=False


五、EfficientNetV1的yaml文件

5.1 yaml文件

大家复制下面的yaml文件,然后通过我给大家的运行代码运行即可,RT-DETR的调参部分需要后面的文章给大家讲,现在目前免费给大家看这一部分不开放。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, efficient, []]  # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 5 input_proj.2
  - [-1, 1, AIFI, [1024, 8]] # 6
  - [-1, 1, Conv, [256, 1, 1]]  # 7, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 8
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 9 input_proj.1
  - [[-2, -1], 1, Concat, [1]] # 10
  - [-1, 3, RepC3, [256, 0.5]]  # 11, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]   # 12, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 13
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 14 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 15 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]    # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]   # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]]  # 18 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]    # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]   # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]]  # 21 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]    # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]]  # Detect(P3, P4, P5)


5.2 运行文件

大家可以创建一个train.py文件将下面的代码粘贴进去然后替换你的文件运行即可开始训练。

import warnings
from ultralytics import RTDETR
warnings.filterwarnings('ignore')

if __name__ == '__main__':
    model = RTDETR('替换你想要运行的yaml文件')
    # model.load('') # 可以加载你的版本预训练权重
    model.train(data=r'替换你的数据集地址即可',
                cache=False,
                imgsz=640,
                epochs=72,
                batch=4,
                workers=0,
                device='0',
                project='runs/RT-DETR-train',
                name='exp',
                # amp=True
                )


5.3 成功训练截图

下面是成功运行的截图(确保我的改进机制是可用的),已经完成了有1个epochs的训练,图片太大截不全第2个epochs了。 


六、全文总结

从今天开始正式开始更新RT-DETR剑指论文专栏,本专栏的内容会迅速铺开,在短期呢大量更新,价格也会乘阶梯性上涨,所以想要和我一起学习RT-DETR改进,可以在前期直接关注,本文专栏旨在打造全网最好的RT-DETR专栏为想要发论文的家进行服务。

 专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1400633.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2024首更---Web Service 教程

Web Services 简介 Web Services 可使您的应用程序成为 Web 应用程序。 Web Services 通过 Web 进行发布、查找和使用。 您应当具备的基础知识 在继续学习之前&#xff0c;您需要对下面的知识有基本的了解&#xff1a; HTMLXML 如果您希望首先学习这些项目&#xff0c;请在…

蓝桥杯-dfs(一)

&#x1f4d1;前言 本文主要是【算法】——dfs使用的文章&#xff0c;如果有什么需要改进的地方还请大佬指出⛺️ &#x1f3ac;作者简介&#xff1a;大家好&#xff0c;我是听风与他&#x1f947; ☁️博客首页&#xff1a;CSDN主页听风与他 &#x1f304;每日一句&#xff1…

RLC如何通过改变频率实现输出稳压

当开关频率工作在容性区域时&#xff0c;容抗抵消完感抗还有剩余&#xff0c;所以容抗感抗可以近似为一个容抗Cr,但加上频率的改变&#xff0c;容抗又可以近似为一个可调电阻 那又改如何控制频率&#xff0c;保持输出稳压&#xff1f; 当输入与输出电压不变时&#xff0c;Rac变…

Oracle 经典练习题 50 题

文章目录 一 CreateTable二 练习题1 查询"01"课程比"02"课程成绩高的学生的信息及课程分数2 查询"01"课程比"02"课程成绩低的学生的信息及课程分数3 查询平均成绩大于等于60分的同学的学生编号和学生姓名和平均成绩4 查询平均成绩小于…

[小程序]API、数据与事件

一、API ①事件监听API 以on开头&#xff0c;用来监听事件的触发&#xff08;如wx.inWindowResize&#xff09; ②同步API 以Sync结尾&#xff0c;且可以通过函数返回值获取&#xff0c;执行错误会抛出异常&#xff08;如wx.setStorageSync&#xff09; ③异步API 类似网页中的…

yum下载源,vim使用

文章目录 yum本地配置lzrsz命令行互传scp(远程拷贝)vim yum本地配置 [rootiZf8z3j2ckkap6ypn717msZ ~]# pwd /root [rootiZf8z3j2ckkap6ypn717msZ ~]# ls /etc/yum.repos.d CentOS-Base.repo epel.repo //本地配置源yum会根据/etc/yum.repo.d路径下的配置文件来构成自己的下载…

pip安装之后还是无法使用问题处理

最近由于需要使用到Python 相关功能&#xff0c; 记录下一些入门小技巧 1 python 下载安装 在window10 环境下载免安装版本&#xff0c; 并解压 安装包下载地址&#xff1a; https://www.python.org/ftp/python/3.12.1/python-3.12.1-embed-amd64.zip 2. 安装pip, 由于是内嵌…

基于无锁循环队列的线程池的实现

目录 出处&#xff1a;B站码出名企路 应用场景 设计实现 等待策略模块 晚绑定 C 中的 override关键字 C中的 default 关键字 C中的 delete 关键字 C中的 explicit 关键字 C中 using 别名技巧 sleep 和 yield的区别 noexcept关键字 volatile关键字 无锁循环队列的…

【计算机网络】TCP握手与挥手:三步奏和四步曲

这里写目录标题 前言三次握手四次挥手三次握手和四次挥手的作用TCP三次握手的作用建立连接防止已失效的连接请求建立连接防止重复连接 TCP四次挥手的作用&#xff1a;安全关闭连接避免数据丢失避免半开连接 总结&#xff1a; 总结 前言 TCP&#xff08;传输控制协议&#xff09…

《游戏-02_2D-开发》

基于《游戏-01_2D-开发》&#xff0c; 继续制作游戏&#xff1a; 首先给人物添加一个2D重力效果 在编辑的项目设置中&#xff0c; 可以看出unity默认给的2D重力数值是-9.81&#xff0c;模拟现实社会中的重力效果 下方可以设置帧率 而Gravity Scale代表 这个数值会 * 重力 还…

MySQL---多表等级查询综合练习

创建emp表 CREATE TABLE emp( empno INT(4) NOT NULL COMMENT 员工编号, ename VARCHAR(10) COMMENT 员工名字, job VARCHAR(10) COMMENT 职位, mgr INT(4) COMMENT 上司, hiredate DATE COMMENT 入职时间, sal INT(7) COMMENT 基本工资, comm INT(7) COMMENT 补贴, deptno INT…

【cucumber】cluecumber-report-plugin生成测试报告

cluecumber为生成测试报告的第三方插件&#xff0c;可以生成html测报&#xff0c;该测报生成需以本地json测报的生成为基础。 所以需要在测试开始主文件标签CucumberOptions中&#xff0c;写入生成json报告。 2. pom xml文件中加入插件 <!-- 根据 cucumber json文件 美化测…

使用docker配置semantic slam

一.Docker环境配置 1.拉取Docker镜像 sudo docker pull ubuntu:16.04拉取的为ununtu16版本镜像&#xff0c;环境十分干净&#xff0c;可以通过以下命令查看容器列表 sudo docker images 如果想删除多余的docker image&#xff0c;可以使用指令 sudo docker rmi -f <id&g…

【深度学习目标检测】十七、基于深度学习的洋葱检测系统-含GUI和源码(python,yolov8)

使用AI实现洋葱检测对农业具有以下意义&#xff1a; 提高效率&#xff1a;AI技术可以快速、准确地检测出洋葱中的缺陷和问题&#xff0c;从而提高了检测效率&#xff0c;减少了人工检测的时间和人力成本。提高准确性&#xff1a;AI技术通过大量的数据学习和分析&#xff0c;能够…

【面试】java并发编程面试题

java并发编程面试题 何为进程?何为线程?JVM拓展为什么程序计数器、虚拟机栈和本地方法栈是线程私有的呢&#xff1f;为什么堆和方法区是线程共享的呢虚拟机栈和本地方法栈为什么是私有的?一句话简单了解堆和方法区单核 CPU 上运行多个线程效率一定会高吗&#xff1f;创建线程…

【机组】存储器、总线及堆栈寄存器实验的解密与实战

​&#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;《机组 | 模块单元实验》⏰诗赋清音&#xff1a;云生高巅梦远游&#xff0c; 星光点缀碧海愁。 山川深邃情难晤&#xff0c; 剑气凌云志自修。 ​目录 &#x1f33a;一、 实验目的 …

【力扣hot100】二分查找

文章目录 Arrays.sort()时间复杂度o(n)二分法时间复杂度o(logn) 1.搜索插入位置代码 2. 搜索二维矩阵思路&#xff1a;代码&#xff1a; 34. 在排序数组中查找元素的第一个和最后一个位置思路&#xff1a;代码&#xff1a; 153. 寻找旋转排序数组中的最小值思路&#xff1a;代码…

5.2 基于深度学习和先验状态的实时指纹室内定位

文献来源 Nabati M, Ghorashi S A. A real-time fingerprint-based indoor positioning using deep learning and preceding states[J]. Expert Systems with Applications, 2023, 213: 118889.&#xff08;5.2_基于指纹的实时室内定位&#xff0c;使用深度学习和前一状态&…

从零开始的OpenGL光栅化渲染器构建3-法线贴图和视差贴图

前言 我们可以用一张纹理贴图来表现物体表面的基础反射颜色&#xff0c;也可以用一张镜面反射贴图&#xff0c;来指派表面是否产生高光。除此之外&#xff0c;我们可以用贴图来存储表面的法线信息&#xff0c;以及高度信息&#xff0c;从而让渲染效果更加精细。 法线贴图 我…

linux下USB抓包和分析流程

linux下USB抓包和分析流程 在windows下抓取usb包时可以通过wireshark安装时安装USBpcap来实现usb抓包&#xff0c;linux下如何操作呢&#xff1f; 是基于usbmon&#xff0c;本博客简单描述基于usbmon在linux系统上对通过usb口进行发送和接收的数据的抓包流程&#xff0c;分别描…