主要是我自己刷题的一些记录过程。如果有错可以指出哦,大家一起进步。
转载代码随想录
原文链接:
代码随想录
leetcode链接:112. 路径总和
112. 路径总和
题目:
给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。
叶子节点 是指没有子节点的节点。
示例:
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出:true
解释:等于目标和的根节点到叶节点路径如上图所示。
示例 2:
输入:root = [1,2,3], targetSum = 5
输出:false
解释:树中存在两条根节点到叶子节点的路径:
(1 --> 2): 和为 3
(1 --> 3): 和为 4
不存在 sum = 5 的根节点到叶子节点的路径。
示例 3:
输入:root = [], targetSum = 0
输出:false
解释:由于树是空的,所以不存在根节点到叶子节点的路径。
提示:
树中节点的数目在范围 [0, 5000] 内
-1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
思路:
递归
可以使用深度优先遍历的方式(本题前中后序都可以,无所谓,因为中节点也没有处理逻辑)来遍历二叉树
1.确定递归函数的参数和返回类型
参数:需要二叉树的根节点,还需要一个计数器,这个计数器用来计算二叉树的一条边之和是否正好是目标和,计数器为int型。
再来看返回值,递归函数什么时候需要返回值?什么时候不需要返回值?这里总结如下三点:
- 如果需要搜索整棵二叉树且不用处理递归返回值,递归函数就不要返回值。(这种情况就是本文下半部分介绍的113.路径总和ii)
- 如果需要搜索整棵二叉树且需要处理递归返回值,递归函数就需要返回值。 (这种情况我们在236. 二叉树的最近公共祖先 (opens new window)中介绍)
- 如果要搜索其中一条符合条件的路径,那么递归一定需要返回值,因为遇到符合条件的路径了就要及时返回。(本题的情况)
而本题我们要找一条符合条件的路径,所以递归函数需要返回值,及时返回,那么返回类型是什么呢?
如图所示:
图中可以看出,遍历的路线,并不要遍历整棵树,所以递归函数需要返回值,可以用bool类型表示。
所以代码如下:
bool traversal(treenode* cur, int count) // 注意函数的返回类型
2.确定终止条件
首先计数器如何统计这一条路径的和呢?
不要去累加然后判断是否等于目标和,那么代码比较麻烦,可以用递减,让计数器count初始为目标和,然后每次减去遍历路径节点上的数值。
如果最后count == 0,同时到了叶子节点的话,说明找到了目标和。
如果遍历到了叶子节点,count不为0,就是没找到。
递归终止条件代码如下:
if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0
if (!cur->left && !cur->right) return false; // 遇到叶子节点而没有找到合适的边,直接返回
3.确定单层递归的逻辑
因为终止条件是判断叶子节点,所以递归的过程中就不要让空节点进入递归了。
递归函数是有返回值的,如果递归函数返回true,说明找到了合适的路径,应该立刻返回。
代码如下:
if (cur->left) { // 左 (空节点不遍历)
// 遇到叶子节点返回true,则直接返回true
if (traversal(cur->left, count - cur->left->val)) return true; // 注意这里有回溯的逻辑
}
if (cur->right) { // 右 (空节点不遍历)
// 遇到叶子节点返回true,则直接返回true
if (traversal(cur->right, count - cur->right->val)) return true; // 注意这里有回溯的逻辑
}
return false;
以上代码中是包含着回溯的,没有回溯,如何后撤重新找另一条路径呢。
回溯隐藏在traversal(cur->left, count - cur->left->val)
这里, 因为把count - cur->left->val
直接作为参数传进去,函数结束,count的数值没有改变。
为了把回溯的过程体现出来,可以改为如下代码:
if (cur->left) { // 左
count -= cur->left->val; // 递归,处理节点;
if (traversal(cur->left, count)) return true;
count += cur->left->val; // 回溯,撤销处理结果
}
if (cur->right) { // 右
count -= cur->right->val;
if (traversal(cur->right, count)) return true;
count += cur->right->val;
}
return false;
整体代码如下:
class Solution {
private:
bool traversal(TreeNode* cur, int count) {
if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0
if (!cur->left && !cur->right) return false; // 遇到叶子节点直接返回
if (cur->left) { // 左
count -= cur->left->val; // 递归,处理节点;
if (traversal(cur->left, count)) return true;
count += cur->left->val; // 回溯,撤销处理结果
}
if (cur->right) { // 右
count -= cur->right->val; // 递归,处理节点;
if (traversal(cur->right, count)) return true;
count += cur->right->val; // 回溯,撤销处理结果
}
return false;
}
public:
bool hasPathSum(TreeNode* root, int sum) {
if (root == NULL) return false;
return traversal(root, sum - root->val);
}
};
以上代码精简之后如下:
class solution {
public:
bool hasPathSum(TreeNode* root, int sum) {
if (root == null) return false;
if (!root->left && !root->right && sum == root->val) {
return true;
}
return haspathsum(root->left, sum - root->val) || haspathsum(root->right, sum - root->val);
}
};
是不是发现精简之后的代码,已经完全看不出分析的过程了,所以我们要把题目分析清楚之后,再追求代码精简。 这一点我已经强调很多次了!
迭代
如果使用栈模拟递归的话,那么如果做回溯呢?
此时栈里一个元素不仅要记录该节点指针,还要记录从头结点到该节点的路径数值总和。
c++就我们用pair结构来存放这个栈里的元素。
定义为:pair<TreeNode*, int> pair
<节点指针,路径数值>
这个为栈里的一个元素。
如下代码是使用栈模拟的前序遍历,如下:(详细注释)
class solution {
public:
bool haspathsum(TreeNode* root, int sum) {
if (root == null) return false;
// 此时栈里要放的是pair<节点指针,路径数值>
stack<pair<TreeNode*, int>> st;
st.push(pair<TreeNode*, int>(root, root->val));
while (!st.empty()) {
pair<TreeNode*, int> node = st.top();
st.pop();
// 如果该节点是叶子节点了,同时该节点的路径数值等于sum,那么就返回true
if (!node.first->left && !node.first->right && sum == node.second) return true;
// 右节点,压进去一个节点的时候,将该节点的路径数值也记录下来
if (node.first->right) {
st.push(pair<TreeNode*, int>(node.first->right, node.second + node.first->right->val));
}
// 左节点,压进去一个节点的时候,将该节点的路径数值也记录下来
if (node.first->left) {
st.push(pair<TreeNode*, int>(node.first->left, node.second + node.first->left->val));
}
}
return false;
}
};
自己的代码
其实我自己写的和他的稍微有一点点差距,
class Solution {
public:
//sum用的值传递,所以进入一层就直接加上节点的值,如果是叶子结点在判断我的求和与目标值相不相等。
bool dfs(TreeNode* node, int sum, const int& targetSum) {
if (!node) return false;
sum += node->val;
if (!node->left && !node->right) { //是叶子节点
return targetSum == sum ? true : false;
}
return dfs(node->left, sum, targetSum)|| dfs(node->right, sum, targetSum);
}
bool hasPathSum(TreeNode* root, int targetSum) {
if (!root) return false;
int sum = 0;
return dfs(root, sum, targetSum);
}
};
如果大家完全理解了本题的递归方法之后,就可以顺便把leetcode上113. 路径总和ii做了。
113. 路径总和ii
题目
给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。
叶子节点 是指没有子节点的节点。
示例
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出:[[5,4,11,2],[5,8,4,5]]
示例 2:
输入:root = [1,2,3], targetSum = 5
输出:[]
示例 3:
输入:root = [1,2], targetSum = 0
输出:[]
提示:
树中节点总数在范围 [0, 5000] 内
-1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
思路
113.路径总和ii要遍历整个树,找到所有路径,所以递归函数不要返回值!
为了尽可能的把细节体现出来,卡哥写出如下代码(这份代码并不简洁,但是逻辑非常清晰)
class solution {
private:
vector<vector<int>> result;
vector<int> path;
// 递归函数不需要返回值,因为我们要遍历整个树
void traversal(treenode* cur, int count) {
if (!cur->left && !cur->right && count == 0) { // 遇到了叶子节点且找到了和为sum的路径
result.push_back(path);
return;
}
if (!cur->left && !cur->right) return ; // 遇到叶子节点而没有找到合适的边,直接返回
if (cur->left) { // 左 (空节点不遍历)
path.push_back(cur->left->val);
count -= cur->left->val;
traversal(cur->left, count); // 递归
count += cur->left->val; // 回溯
path.pop_back(); // 回溯
}
if (cur->right) { // 右 (空节点不遍历)
path.push_back(cur->right->val);
count -= cur->right->val;
traversal(cur->right, count); // 递归
count += cur->right->val; // 回溯
path.pop_back(); // 回溯
}
return ;
}
public:
vector<vector<int>> pathsum(treenode* root, int sum) {
result.clear(); //删除容器中所有元素
path.clear(); //删除容器中所有元素
if (root == null) return result;
path.push_back(root->val); // 把根节点放进路径
traversal(root, sum - root->val);
return result;
}
};
我自己的代码
class Solution {
public:
void dfs(TreeNode* node, const int& targetSum, vector<int>& temp, vector<vector<int>>& result) {
if (!node) return;
temp.push_back(node->val); //前序遍历一进来就先push进去
if (!node->left && !node->right) { //叶子结点
if (targetSum == accumulate(temp.begin(), temp.end(), 0)) {//accumulate这个是容器的求和函数,前两个参数是求和范围,最后一个参数是求和的初始值(基本是0)。
result.push_back(temp);
}
}
if (node->left) {
dfs(node->left, targetSum, temp, result);
temp.pop_back();//回溯的过程。
}
if (node->right) {
dfs(node->right, targetSum, temp, result);
temp.pop_back();//回溯的过程。
}
}
vector<vector<int>> pathSum(TreeNode* root, int targetSum) {
vector<vector<int>>result;
if (!root) return result;
vector<int>temp;
dfs(root, targetSum, temp, result);
return result;
}
};
至于113. 路径总和ii 的迭代法我并没有写,用迭代方式记录所有路径比较麻烦,也没有必要,如果大家感兴趣的话,可以再深入研究研究。
总结
本篇通过leetcode上112. 路径总和 和 113. 路径总和ii 详细的讲解了 递归函数什么时候需要返回值,什么不需要返回值。
这两道题目是掌握这一知识点非常好的题目,大家看完本篇文章再去做题,就会感受到搜索整棵树和搜索某一路径的差别。
对于112. 路径总和,我依然给出了递归法和迭代法,这种题目其实用迭代法会复杂一些,能掌握递归方式就够了!