深度学习模型之yolov8实例分割模型TesorRT部署-python版本

news2024/11/16 21:53:00

1 模型转换

从github上下载官方yolov8版本,当前使用的版本是2023年9月份更新的版本,作者一直在更新。官网地址

2 加载模型

模型的训练和测试在官方文档上,有详细的说明,yolov8中文文档这里不做过多说明,v8现在训练是真的方便了,环境部署好之后,几行代码就跑起来了,例如:

from ultralytics import YOLO
from setproctitle import setproctitle
setproctitle("python|yolov8-seg 20231211")

# 载入一个模型
model = YOLO('yolov8n-seg.yaml')  # 从YAML构建一个新模型
# model = YOLO('/data/siping/preweights/yolov8n-seg.pt')    # 载入预训练模型(推荐用于训练)
# model = YOLO('yolov8m-seg.yaml').load('/data/siping/preweights/yolov8m.pt')  # 从YAML构建并传递权重

# 训练模型
model.train(task='segment',
            data='/ultralytics/cfg/datasets/coco128-seg.yaml ',
            epochs=200,
            batch=32,
            imgsz=320,
            device=1,
            translate=0
           )  # 训练模型

model.val()

# Export the model
model.export(format='onnx',imgsz=(320,320),opset=12)

模型训练完成后,对保存下来的best.pt模型转换为onnx模型,由于后期会部署到NX和其他不同类型的显卡上,因此先转换为通用的onnx模型。导出onnx代码:

# Export the model
model.export(format='onnx',imgsz=(384,640),opset=12)

导出的操作可以直接在训练的代码最后面加入一行即可。

onnx模型导出成功后,将模型拷贝到需要运行的机器上,使用tensorrt转换为trt模型,后缀可以是trt或者engine,转换代码这里总结了两个版本的转换代码:
Tensotrt 7.1:

# -*- coding: utf-8 -*- 
import tensorrt as trt
import sys
import os

TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)

def printShape(engine):
    for i in range(engine.num_bindings):
        if engine.binding_is_input(i):
            print("input layer: {}, shape is: {} ".format(i, engine.get_binding_shape(i)))
        else:
            print("output layer: {} shape is: {} ".format(i, engine.get_binding_shape(i)))

def onnx2trt(onnx_path, engine_path):
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
        builder.max_workspace_size = 1 << 28 # 256MB
        #builder.set_fp16_mode(True)     
        #builder.precision = trt.BuilderFlag.FP16    
        #builder.config.set_flag(trt.BuilderFlag.FP16)           
        with open(onnx_path, 'rb') as model:
            parser.parse(model.read())
        engine = builder.build_cuda_engine(network)

        printShape(engine)            

        with open(engine_path, "wb") as f:
            f.write(engine.serialize())

if __name__ == "__main__":                             
    #onnx文件路径设置
    model_name = "20240115_yolov8Seg_Person"
    input_path = model_name+".onnx"
    #引擎文件保存路径设置
    root_dir = "/ai/good_model/"
    output_path = root_dir + model_name + '.engine'
    onnx2trt(input_path, output_path)

一般是在NX上做模型转换,NX初始化的tensorrt版本较低,这个代码成功导出和部署使用。

tensorrt8.4.0.6版本转换代码:

# 导入必用依赖
import tensorrt as trt
#onnx文件路径设置
onnx_path="./repvgg.onnx"
#引擎文件保存路径设置
engine_path=r"classify.engine"
# 创建logger:日志记录器
logger = trt.Logger(trt.Logger.WARNING)
 
# 创建构建器builder
builder = trt.Builder(logger)
# 预创建网络
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
# 加载onnx解析器
parser = trt.OnnxParser(network, logger)
success = parser.parse_from_file(onnx_path)
for idx in range(parser.num_errors):
    print(parser.get_error(idx))
if not success:
    print("failed----------------")
    pass  # Error handling code here
    
# builder配置
config = builder.create_builder_config()
# 分配显存作为工作区间,一般建议为显存一半的大小
config.max_workspace_size = 12 << 30  # 1 Mi
builder.max_batch_size = 1  

   
serialized_engine = builder.build_serialized_network(network, config)
# 序列化生成engine文件
with open(engine_path, "wb") as f:
    f.write(serialized_engine)
    print("generate file success!")

这个可以成功导出8.4以上版本的onnx模型,包括CNN的分类模型等。

如果是在windows下做模型导出和测试,可以直接去官网下载一个Tensorrt对应版本的包,直接使用trtexec导出也可以。

3 算法部署

yolov8的分割模型部署代码参考yolov8 github的测试代码

3.1 加载trt模型

加载分割模型的trt模型需要注意的是模型的输入和输出的名称是否对应,可以将onnx模型通过netron查看模型的结构:
在这里插入图片描述

3.2 部署代码

部署是加载分割模型的代码:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import cv2
import os
import torch
import numpy as np
import tensorrt as trt
from utils import ops

def select_device(device='', apex=False, batch_size=None):
    # device = 'cpu' or '0' or '0,1,2,3'
    cpu_request = str(device).lower() == 'cpu'
    if str(device) and not cpu_request:  # if device requested other than 'cpu'
        os.environ['CUDA_VISIBLE_DEVICES'] = str(device)  # set environment variable
        assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device  # check availablity

    cuda = False if cpu_request else torch.cuda.is_available()
    if cuda:
        c = 1024 ** 2  # bytes to MB
        ng = torch.cuda.device_count()
        if ng > 1 and batch_size:  # check that batch_size is compatible with device_count
            assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
        x = [torch.cuda.get_device_properties(i) for i in range(ng)]
        s = 'Using CUDA ' + ('Apex ' if apex else '')  # apex for mixed precision https://github.com/NVIDIA/apex
        for i in range(0, ng):
            if i == 1:
                s = ' ' * len(s)
            print("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" %
                  (s, i, x[i].name, x[i].total_memory / c))
    else:
        print('Using CPU')

    print('')  # skip a line
    return torch.device('cuda:0' if cuda else 'cpu')

def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better val mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im, ratio, (dw, dh)


DEVICE = select_device('0')
SEGLABELS = ['dbseg']
SEGWEIGHT = '20240115_yolov8Seg_lift.engine'

class TrtModelSeg():
    def __init__(self, engine_path, device,shapes=(1, 3, 320, 320)):
        """
        :param engine_path: Trt model path
        :param device: torch.device
        """
        self.device = device
        from collections import OrderedDict, namedtuple
        Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
        logger = trt.Logger(trt.Logger.INFO)
        with open(engine_path, 'rb') as f, trt.Runtime(logger) as runtime:
            model = runtime.deserialize_cuda_engine(f.read())
        self.context = model.create_execution_context()
        self.bindings = OrderedDict()
        dynamic = False
        self.input_name = model.get_binding_name(0)
        self.output_name = model.get_binding_name(1)
        self.output_name1 = model.get_binding_name(2)
        for index in range(model.num_bindings):
            name = model.get_binding_name(index)
            dtype = trt.nptype(model.get_binding_dtype(index))
            # print(model.get_binding_shape(index))
            if -1 in tuple(model.get_binding_shape(index)) and index == 0:
                self.context.set_binding_shape(index, shapes)
            shape = tuple(self.context.get_binding_shape(index))
            data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(select_device(device))
            self.bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))
        self.binding_addrs = OrderedDict((n, d.ptr) for n, d in self.bindings.items())

        self.batch_size = self.bindings[self.input_name].shape[0]

    def __call__(self, img):
        """
        :param img: 输入Tensor 图片
        :return:
        """
        # assert img.shape == self.bindings['input'].shape, (img.shape, self.bindings['input'].shape)
        if img.device == torch.device('cpu'):
            img = img.float().to(select_device(self.device))
        # print('in trt dynamic def----input shape is ----',img.shape)
        self.binding_addrs[self.input_name] = int(img.data_ptr())
        self.context.execute_v2(list(self.binding_addrs.values()))
        return [self.bindings['output0'].data, self.bindings['output1'].data]

# 定义图片预处理函数
def get_input_img(image, img_size=[320, 320]):
    # Padded resize
    img,ratio,(dw,dh) = letterbox(image, img_size, stride=32, auto=False)
    img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
    # img = img.transpose((2, 0, 1))[::-1]
    img = np.ascontiguousarray(img)

    img = torch.from_numpy(img).to(DEVICE)
    img = img.float()  # uint8 to fp16/32
    img /= 255.0  # 0 - 255 to 0.0 - 1.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)
    return img,ratio,(dw,dh)

#分割模型
class YoloSeg(object):
    def __init__(self,classes=[]):
        self.conf_thr = 0.4  # conf阈值
        self.iou_thr = 0.4  # iou阈值
        self.model = self._load_model()
        try:
            self.labels = self.model.labels
            print("Seg Using meta model ! ")
        except:
            self.labels = SEGLABELS
            print("Seg Using no meta model ! ")
        self.classes = self._get_display_class(classes) if classes and isinstance(classes, list) else None
        self._warm_up(size=[320, 320])

    def _load_model(self):
        # Load seg model
        print("Load seg model! ",SEGWEIGHT)
        self.model = TrtModelSeg(SEGWEIGHT, DEVICE)

        return self.model

    def _get_display_class(self, classes):
        """只计算classes中包含的类别

        Args:
            classes (list): 只显示classes中包含的类别,其他类别将被遗弃
        """
        return [self.labels.index(c) for c in classes if c in self.labels]

    def _warm_up(self, size=[320, 320]):
        x = torch.randn((1, 3, *size)).float().to(DEVICE)
        self.model(x)

    #参考yolov8 segment/predict.py文件
    def detect_image(self, image):
        # 预处理
        img, ratio, (dw, dh) = get_input_img(image)
        # Inference
        preds = self.model(img)

        detpred = preds[0]

        masks = image
        #1.经过置信度和非极大值筛选的数值 NMS
        pred_nms = ops.non_max_suppression(detpred, self.conf_thr, self.iou_thr,nc=len(SEGLABELS))
        retina_masks = True
        proto = preds[1][-1] if len(preds[1]) == 3 else preds[1]  # second output is len 3 if pt, but only 1 if exported
        # print("proto: ",len(preds[1]),proto.shape)
        print("pred_nms: ",len(pred_nms))
        #从预测输出中提取结果
        #pred_nms是掩码信息,如果有多个mask,选择面积最大的mask,因为是吊臂
        for i, pred in enumerate(pred_nms):
            print("len(pred): ", len(pred))

            #获取原图像的大小
            shape = image.shape
            # print("image: ",shape)
            if not len(pred):  # save empty boxes
                masks = None
            elif retina_masks:
                n_class = int(pred[:,5].item())
                print("n_class: ",n_class,SEGLABELS[n_class])
                #如果标签不等于db
                if(n_class!=0):
                    continue
                #对框坐标进行处理。
                pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape)
                # print("pred[:, :4]: ",pred[:, :4])
                # 对分割结果进行后处理,输入的是proto、pred:,6:,pred[:,:4]为框坐标img.shape[:2]为(320,320)四个数据
                s_masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], shape[:2])  # HWC

                # 从(batch_size, height, width)的形状转换为(height, width, batch_size)的形状,并将结果存储在NumPy数组中。
                s_masks = (s_masks.cpu().numpy() * 255).astype(np.uint8)
                masks = s_masks.transpose(1, 2, 0)

            else:
                masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True)  # HWC
                pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape)

            print("pred,masks: ", masks.shape)

        #返回预测结果和mask
        return pred_nms,masks

def detect(yolo, image_path):
    image = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), cv2.IMREAD_COLOR)
    pred_nms, masks = yolo.detect_image(image)
    return pred_nms, masks


if __name__ == '__main__':
    image_path = r"1.jpg"
    model = TrtModelSeg(SEGWEIGHT, DEVICE,shapes=(1, 3, 320, 320))
    yoloseg = YoloSeg(SEGLABELS)
    pred_nms, masks = detect(yoloseg,image_path)
    cv2.imwrite("mask.jpg",masks)

ops.py文件:

# -*- coding: utf-8 -*-
# Ultralytics YOLO 🚀, AGPL-3.0 license

import contextlib
import math
import re
import time

import cv2
import numpy as np
import torch
import torch.nn.functional as F
import torchvision

class Profile(contextlib.ContextDecorator):
    """
    YOLOv8 Profile class. Use as a decorator with @Profile() or as a context manager with 'with Profile():'.

    Example:
        ```python
        from ultralytics.utils.ops import Profile

        with Profile() as dt:
            pass  # slow operation here

        print(dt)  # prints "Elapsed time is 9.5367431640625e-07 s"
        ```
    """

    def __init__(self, t=0.0):
        """
        Initialize the Profile class.

        Args:
            t (float): Initial time. Defaults to 0.0.
        """
        self.t = t
        self.cuda = torch.cuda.is_available()

    def __enter__(self):
        """Start timing."""
        self.start = self.time()
        return self

    def __exit__(self, type, value, traceback):  # noqa
        """Stop timing."""
        self.dt = self.time() - self.start  # delta-time
        self.t += self.dt  # accumulate dt

    def __str__(self):
        """Returns a human-readable string representing the accumulated elapsed time in the profiler."""
        return f'Elapsed time is {self.t} s'

    def time(self):
        """Get current time."""
        if self.cuda:
            torch.cuda.synchronize()
        return time.time()


def segment2box(segment, width=640, height=640):
    """
    Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy).

    Args:
        segment (torch.Tensor): the segment label
        width (int): the width of the image. Defaults to 640
        height (int): The height of the image. Defaults to 640

    Returns:
        (np.ndarray): the minimum and maximum x and y values of the segment.
    """
    # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
    x, y = segment.T  # segment xy
    inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
    x, y, = x[inside], y[inside]
    return np.array([x.min(), y.min(), x.max(), y.max()], dtype=segment.dtype) if any(x) else np.zeros(
        4, dtype=segment.dtype)  # xyxy


def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None, padding=True):
    """
    Rescales bounding boxes (in the format of xyxy) from the shape of the image they were originally specified in
    (img1_shape) to the shape of a different image (img0_shape).

    Args:
        img1_shape (tuple): The shape of the image that the bounding boxes are for, in the format of (height, width).
        boxes (torch.Tensor): the bounding boxes of the objects in the image, in the format of (x1, y1, x2, y2)
        img0_shape (tuple): the shape of the target image, in the format of (height, width).
        ratio_pad (tuple): a tuple of (ratio, pad) for scaling the boxes. If not provided, the ratio and pad will be
            calculated based on the size difference between the two images.
        padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
            rescaling.

    Returns:
        boxes (torch.Tensor): The scaled bounding boxes, in the format of (x1, y1, x2, y2)
    """
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = round((img1_shape[1] - img0_shape[1] * gain) / 2 - 0.1), round(
            (img1_shape[0] - img0_shape[0] * gain) / 2 - 0.1)  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    if padding:
        boxes[..., [0, 2]] -= pad[0]  # x padding
        boxes[..., [1, 3]] -= pad[1]  # y padding
    boxes[..., :4] /= gain
    return clip_boxes(boxes, img0_shape)


def make_divisible(x, divisor):
    """
    Returns the nearest number that is divisible by the given divisor.

    Args:
        x (int): The number to make divisible.
        divisor (int | torch.Tensor): The divisor.

    Returns:
        (int): The nearest number divisible by the divisor.
    """
    if isinstance(divisor, torch.Tensor):
        divisor = int(divisor.max())  # to int
    return math.ceil(x / divisor) * divisor


#NMS
def non_max_suppression(
        prediction,
        conf_thres=0.25,
        iou_thres=0.45,
        classes=None,
        agnostic=False,
        multi_label=False,
        labels=(),
        max_det=300,
        nc=0,  # number of classes (optional)
        max_time_img=0.05,
        max_nms=30000,
        max_wh=7680,
):
    """
    Perform non-maximum suppression (NMS) on a set of boxes, with support for masks and multiple labels per box.

    Args:
        prediction (torch.Tensor): A tensor of shape (batch_size, num_classes + 4 + num_masks, num_boxes)
            containing the predicted boxes, classes, and masks. The tensor should be in the format
            output by a model, such as YOLO.
        conf_thres (float): The confidence threshold below which boxes will be filtered out.
            Valid values are between 0.0 and 1.0.
        iou_thres (float): The IoU threshold below which boxes will be filtered out during NMS.
            Valid values are between 0.0 and 1.0.
        classes (List[int]): A list of class indices to consider. If None, all classes will be considered.
        agnostic (bool): If True, the model is agnostic to the number of classes, and all
            classes will be considered as one.
        multi_label (bool): If True, each box may have multiple labels.
        labels (List[List[Union[int, float, torch.Tensor]]]): A list of lists, where each inner
            list contains the apriori labels for a given image. The list should be in the format
            output by a dataloader, with each label being a tuple of (class_index, x1, y1, x2, y2).
        max_det (int): The maximum number of boxes to keep after NMS.
        nc (int, optional): The number of classes output by the model. Any indices after this will be considered masks.
        max_time_img (float): The maximum time (seconds) for processing one image.
        max_nms (int): The maximum number of boxes into torchvision.ops.nms().
        max_wh (int): The maximum box width and height in pixels

    Returns:
        (List[torch.Tensor]): A list of length batch_size, where each element is a tensor of
            shape (num_boxes, 6 + num_masks) containing the kept boxes, with columns
            (x1, y1, x2, y2, confidence, class, mask1, mask2, ...).
    """

    # Checks


    #先判断设置的置信度和iou阈值是否在0和1之间,如不在,则报错是不符合要求的阈值。
    assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
    assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'

    #判读那输入的prediction类型,如果之前没有进行提取,则此处再进行提取,如提取过,则直接跳过。

    if isinstance(prediction, (list, tuple)):  # YOLOv8 model in validation model, output = (inference_out, loss_out)
        prediction = prediction[0]  # select only inference output


    bs = prediction.shape[0]  # batch size
    nc = nc or (prediction.shape[1] - 4)  # number of classes 获取类别数目nc,本文是1,其中nm为32是mask的数量
    nm = prediction.shape[1] - nc - 4
    mi = 4 + nc  # mask start index mi为读取mask开始的位置,即数组前边是框、类别置信度,然后是mask
    xc = prediction[:, 4:mi].amax(1) > conf_thres
    # candidates xc为根据置信度分数从结果中筛选结果,即分数大于置信度的为True,小于的为False

    # Settings
    # min_wh = 2  # (pixels) minimum box width and height
    time_limit = 0.5 + max_time_img * bs  # seconds to quit after
    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)

    prediction = prediction.transpose(-1, -2)  # shape(1,84,6300) to shape(1,6300,84)
    prediction[..., :4] = xywh2xyxy(prediction[..., :4])  # xywh to xyxy

    t = time.time()
    output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        # x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = x[xc[xi]]  # confidence

        # Cat apriori labels if autolabelling
        if labels and len(labels[xi]):
            lb = labels[xi]
            v = torch.zeros((len(lb), nc + nm + 4), device=x.device)
            v[:, :4] = xywh2xyxy(lb[:, 1:5])  # box
            v[range(len(lb)), lb[:, 0].long() + 4] = 1.0  # cls
            x = torch.cat((x, v), 0)

        # If none remain process next image
        if not x.shape[0]:
            continue

        # Detections matrix nx6 (xyxy, conf, cls)
        box, cls, mask = x.split((4, nc, nm), 1)

        if multi_label:
            i, j = torch.where(cls > conf_thres)
            x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1)
        else:  # best class only
            conf, j = cls.max(1, keepdim=True)
            x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]

        # Filter by class
        if classes is not None:
            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

        # Check shape
        n = x.shape[0]  # number of boxes
        if not n:  # no boxes
            continue
        if n > max_nms:  # excess boxes
            x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence and remove excess boxes

        # Batched NMS
        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
        i = i[:max_det]  # limit detections

        # # Experimental
        # merge = False  # use merge-NMS
        # if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
        #     # Update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
        #     from .metrics import box_iou
        #     iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
        #     weights = iou * scores[None]  # box weights
        #     x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
        #     redundant = True  # require redundant detections
        #     if redundant:
        #         i = i[iou.sum(1) > 1]  # require redundancy

        output[xi] = x[i]
        if (time.time() - t) > time_limit:
            print(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded')
            break  # time limit exceeded
    """
    到此处,此幅图像经过了置信度阈值判断和非极大值抑制处理,确定了图像中的目标类别、分数和框的位置。
    """
    return output


def clip_boxes(boxes, shape):
    """
    Takes a list of bounding boxes and a shape (height, width) and clips the bounding boxes to the shape.

    Args:
        boxes (torch.Tensor): the bounding boxes to clip
        shape (tuple): the shape of the image

    Returns:
        (torch.Tensor | numpy.ndarray): Clipped boxes
    """
    if isinstance(boxes, torch.Tensor):  # faster individually (WARNING: inplace .clamp_() Apple MPS bug)
        boxes[..., 0] = boxes[..., 0].clamp(0, shape[1])  # x1
        boxes[..., 1] = boxes[..., 1].clamp(0, shape[0])  # y1
        boxes[..., 2] = boxes[..., 2].clamp(0, shape[1])  # x2
        boxes[..., 3] = boxes[..., 3].clamp(0, shape[0])  # y2
    else:  # np.array (faster grouped)
        boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1])  # x1, x2
        boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0])  # y1, y2
    return boxes


def clip_coords(coords, shape):
    """
    Clip line coordinates to the image boundaries.

    Args:
        coords (torch.Tensor | numpy.ndarray): A list of line coordinates.
        shape (tuple): A tuple of integers representing the size of the image in the format (height, width).

    Returns:
        (torch.Tensor | numpy.ndarray): Clipped coordinates
    """
    if isinstance(coords, torch.Tensor):  # faster individually (WARNING: inplace .clamp_() Apple MPS bug)
        coords[..., 0] = coords[..., 0].clamp(0, shape[1])  # x
        coords[..., 1] = coords[..., 1].clamp(0, shape[0])  # y
    else:  # np.array (faster grouped)
        coords[..., 0] = coords[..., 0].clip(0, shape[1])  # x
        coords[..., 1] = coords[..., 1].clip(0, shape[0])  # y
    return coords


def scale_image(masks, im0_shape, ratio_pad=None):
    """
    Takes a mask, and resizes it to the original image size.

    Args:
        masks (np.ndarray): resized and padded masks/images, [h, w, num]/[h, w, 3].
        im0_shape (tuple): the original image shape
        ratio_pad (tuple): the ratio of the padding to the original image.

    Returns:
        masks (torch.Tensor): The masks that are being returned.
    """
    # Rescale coordinates (xyxy) from im1_shape to im0_shape
    im1_shape = masks.shape
    if im1_shape[:2] == im0_shape[:2]:
        return masks
    if ratio_pad is None:  # calculate from im0_shape
        gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1])  # gain  = old / new
        pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]
    top, left = (int(round(pad[1] - 0.1)), int(round(pad[0] - 0.1)))  # y, x
    bottom, right = (int(round(im1_shape[0] - pad[1] + 0.1)), int(round(im1_shape[1] - pad[0] + 0.1)))

    if len(masks.shape) < 2:
        raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
    masks = masks[top:bottom, left:right]
    masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
    if len(masks.shape) == 2:
        masks = masks[:, :, None]

    return masks


def xyxy2xywh(x):
    """
    Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format where (x1, y1) is the
    top-left corner and (x2, y2) is the bottom-right corner.

    Args:
        x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.

    Returns:
        y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height) format.
    """
    assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}'
    y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x)  # faster than clone/copy
    y[..., 0] = (x[..., 0] + x[..., 2]) / 2  # x center
    y[..., 1] = (x[..., 1] + x[..., 3]) / 2  # y center
    y[..., 2] = x[..., 2] - x[..., 0]  # width
    y[..., 3] = x[..., 3] - x[..., 1]  # height
    return y


def xywh2xyxy(x):
    """
    Convert bounding box coordinates from (x, y, width, height) format to (x1, y1, x2, y2) format where (x1, y1) is the
    top-left corner and (x2, y2) is the bottom-right corner.

    Args:
        x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x, y, width, height) format.

    Returns:
        y (np.ndarray | torch.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format.
    """
    assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}'
    y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x)  # faster than clone/copy
    dw = x[..., 2] / 2  # half-width
    dh = x[..., 3] / 2  # half-height
    y[..., 0] = x[..., 0] - dw  # top left x
    y[..., 1] = x[..., 1] - dh  # top left y
    y[..., 2] = x[..., 0] + dw  # bottom right x
    y[..., 3] = x[..., 1] + dh  # bottom right y
    return y


def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
    """
    Convert normalized bounding box coordinates to pixel coordinates.

    Args:
        x (np.ndarray | torch.Tensor): The bounding box coordinates.
        w (int): Width of the image. Defaults to 640
        h (int): Height of the image. Defaults to 640
        padw (int): Padding width. Defaults to 0
        padh (int): Padding height. Defaults to 0
    Returns:
        y (np.ndarray | torch.Tensor): The coordinates of the bounding box in the format [x1, y1, x2, y2] where
            x1,y1 is the top-left corner, x2,y2 is the bottom-right corner of the bounding box.
    """
    assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}'
    y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x)  # faster than clone/copy
    y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw  # top left x
    y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh  # top left y
    y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw  # bottom right x
    y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh  # bottom right y
    return y


def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
    """
    Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height, normalized) format. x, y,
    width and height are normalized to image dimensions.

    Args:
        x (np.ndarray | torch.Tensor): The input bounding box coordinates in (x1, y1, x2, y2) format.
        w (int): The width of the image. Defaults to 640
        h (int): The height of the image. Defaults to 640
        clip (bool): If True, the boxes will be clipped to the image boundaries. Defaults to False
        eps (float): The minimum value of the box's width and height. Defaults to 0.0

    Returns:
        y (np.ndarray | torch.Tensor): The bounding box coordinates in (x, y, width, height, normalized) format
    """
    if clip:
        x = clip_boxes(x, (h - eps, w - eps))
    assert x.shape[-1] == 4, f'input shape last dimension expected 4 but input shape is {x.shape}'
    y = torch.empty_like(x) if isinstance(x, torch.Tensor) else np.empty_like(x)  # faster than clone/copy
    y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w  # x center
    y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h  # y center
    y[..., 2] = (x[..., 2] - x[..., 0]) / w  # width
    y[..., 3] = (x[..., 3] - x[..., 1]) / h  # height
    return y


def xywh2ltwh(x):
    """
    Convert the bounding box format from [x, y, w, h] to [x1, y1, w, h], where x1, y1 are the top-left coordinates.

    Args:
        x (np.ndarray | torch.Tensor): The input tensor with the bounding box coordinates in the xywh format

    Returns:
        y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format
    """
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[..., 0] = x[..., 0] - x[..., 2] / 2  # top left x
    y[..., 1] = x[..., 1] - x[..., 3] / 2  # top left y
    return y


def xyxy2ltwh(x):
    """
    Convert nx4 bounding boxes from [x1, y1, x2, y2] to [x1, y1, w, h], where xy1=top-left, xy2=bottom-right.

    Args:
        x (np.ndarray | torch.Tensor): The input tensor with the bounding boxes coordinates in the xyxy format

    Returns:
        y (np.ndarray | torch.Tensor): The bounding box coordinates in the xyltwh format.
    """
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[..., 2] = x[..., 2] - x[..., 0]  # width
    y[..., 3] = x[..., 3] - x[..., 1]  # height
    return y


def ltwh2xywh(x):
    """
    Convert nx4 boxes from [x1, y1, w, h] to [x, y, w, h] where xy1=top-left, xy=center.

    Args:
        x (torch.Tensor): the input tensor

    Returns:
        y (np.ndarray | torch.Tensor): The bounding box coordinates in the xywh format.
    """
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[..., 0] = x[..., 0] + x[..., 2] / 2  # center x
    y[..., 1] = x[..., 1] + x[..., 3] / 2  # center y
    return y


def xyxyxyxy2xywhr(corners):
    """
    Convert batched Oriented Bounding Boxes (OBB) from [xy1, xy2, xy3, xy4] to [xywh, rotation].

    Args:
        corners (numpy.ndarray | torch.Tensor): Input corners of shape (n, 8).

    Returns:
        (numpy.ndarray | torch.Tensor): Converted data in [cx, cy, w, h, rotation] format of shape (n, 5).
    """
    is_numpy = isinstance(corners, np.ndarray)
    atan2, sqrt = (np.arctan2, np.sqrt) if is_numpy else (torch.atan2, torch.sqrt)

    x1, y1, x2, y2, x3, y3, x4, y4 = corners.T
    cx = (x1 + x3) / 2
    cy = (y1 + y3) / 2
    dx21 = x2 - x1
    dy21 = y2 - y1

    w = sqrt(dx21 ** 2 + dy21 ** 2)
    h = sqrt((x2 - x3) ** 2 + (y2 - y3) ** 2)

    rotation = atan2(-dy21, dx21)
    rotation *= 180.0 / math.pi  # radians to degrees

    return np.vstack((cx, cy, w, h, rotation)).T if is_numpy else torch.stack((cx, cy, w, h, rotation), dim=1)


def xywhr2xyxyxyxy(center):
    """
    Convert batched Oriented Bounding Boxes (OBB) from [xywh, rotation] to [xy1, xy2, xy3, xy4].

    Args:
        center (numpy.ndarray | torch.Tensor): Input data in [cx, cy, w, h, rotation] format of shape (n, 5).

    Returns:
        (numpy.ndarray | torch.Tensor): Converted corner points of shape (n, 8).
    """
    is_numpy = isinstance(center, np.ndarray)
    cos, sin = (np.cos, np.sin) if is_numpy else (torch.cos, torch.sin)

    cx, cy, w, h, rotation = center.T
    rotation *= math.pi / 180.0  # degrees to radians

    dx = w / 2
    dy = h / 2

    cos_rot = cos(rotation)
    sin_rot = sin(rotation)
    dx_cos_rot = dx * cos_rot
    dx_sin_rot = dx * sin_rot
    dy_cos_rot = dy * cos_rot
    dy_sin_rot = dy * sin_rot

    x1 = cx - dx_cos_rot - dy_sin_rot
    y1 = cy + dx_sin_rot - dy_cos_rot
    x2 = cx + dx_cos_rot - dy_sin_rot
    y2 = cy - dx_sin_rot - dy_cos_rot
    x3 = cx + dx_cos_rot + dy_sin_rot
    y3 = cy - dx_sin_rot + dy_cos_rot
    x4 = cx - dx_cos_rot + dy_sin_rot
    y4 = cy + dx_sin_rot + dy_cos_rot

    return np.vstack((x1, y1, x2, y2, x3, y3, x4, y4)).T if is_numpy else torch.stack(
        (x1, y1, x2, y2, x3, y3, x4, y4), dim=1)


def ltwh2xyxy(x):
    """
    It converts the bounding box from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right.

    Args:
        x (np.ndarray | torch.Tensor): the input image

    Returns:
        y (np.ndarray | torch.Tensor): the xyxy coordinates of the bounding boxes.
    """
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[..., 2] = x[..., 2] + x[..., 0]  # width
    y[..., 3] = x[..., 3] + x[..., 1]  # height
    return y


def segments2boxes(segments):
    """
    It converts segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)

    Args:
        segments (list): list of segments, each segment is a list of points, each point is a list of x, y coordinates

    Returns:
        (np.ndarray): the xywh coordinates of the bounding boxes.
    """
    boxes = []
    for s in segments:
        x, y = s.T  # segment xy
        boxes.append([x.min(), y.min(), x.max(), y.max()])  # cls, xyxy
    return xyxy2xywh(np.array(boxes))  # cls, xywh


def resample_segments(segments, n=1000):
    """
    Inputs a list of segments (n,2) and returns a list of segments (n,2) up-sampled to n points each.

    Args:
        segments (list): a list of (n,2) arrays, where n is the number of points in the segment.
        n (int): number of points to resample the segment to. Defaults to 1000

    Returns:
        segments (list): the resampled segments.
    """
    for i, s in enumerate(segments):
        s = np.concatenate((s, s[0:1, :]), axis=0)
        x = np.linspace(0, len(s) - 1, n)
        xp = np.arange(len(s))
        segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)],
                                     dtype=np.float32).reshape(2, -1).T  # segment xy
    return segments


#裁剪掩码mask 输入的是masks和downsampled_bboxes
def crop_mask(masks, boxes):
    """
    It takes a mask and a bounding box, and returns a mask that is cropped to the bounding box.

    Args:
        masks (torch.Tensor): [n, h, w] tensor of masks
        boxes (torch.Tensor): [n, 4] tensor of bbox coordinates in relative point form

    Returns:
        (torch.Tensor): The masks are being cropped to the bounding box.



    确保masks的值在图像大小范围之内。

    masks.gt_(0.5)判断masks中的值是否大于0.5,大于则为true。
    """

    n, h, w = masks.shape
    # print("n, h, w :",masks.shape)
    #然后对boxes的内容进行拆分,torch.chunk(),拆分为四个,x1, y1, x2, y2
    x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1)  # x1 shape(n,1,1)
    r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :]  # rows shape(1,1,w)
    c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None]  # cols shape(1,h,1)

    return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))


def process_mask_upsample(protos, masks_in, bboxes, shape):
    """
    Takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher quality
    but is slower.

    Args:
        protos (torch.Tensor): [mask_dim, mask_h, mask_w]
        masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms
        bboxes (torch.Tensor): [n, 4], n is number of masks after nms
        shape (tuple): the size of the input image (h,w)

    Returns:
        (torch.Tensor): The upsampled masks.
    """
    c, mh, mw = protos.shape  # CHW
    masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
    masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0]  # CHW
    masks = crop_mask(masks, bboxes)  # CHW

    #判断masks中的值是否大于0.5,大于则为true
    return masks.gt_(0.5)


def process_mask(protos, masks_in, bboxes, shape, upsample=False):
    """
    Apply masks to bounding boxes using the output of the mask head.

    Args:
        protos (torch.Tensor): A tensor of shape [mask_dim, mask_h, mask_w].
        masks_in (torch.Tensor): A tensor of shape [n, mask_dim], where n is the number of masks after NMS.
        bboxes (torch.Tensor): A tensor of shape [n, 4], where n is the number of masks after NMS.
        shape (tuple): A tuple of integers representing the size of the input image in the format (h, w).
        upsample (bool): A flag to indicate whether to upsample the mask to the original image size. Default is False.

    Returns:
        (torch.Tensor): A binary mask tensor of shape [n, h, w], where n is the number of masks after NMS, and h and w
            are the height and width of the input image. The mask is applied to the bounding boxes.
    """

    c, mh, mw = protos.shape  # CHW
    ih, iw = shape
    masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)  # CHW

    downsampled_bboxes = bboxes.clone()
    downsampled_bboxes[:, 0] *= mw / iw
    downsampled_bboxes[:, 2] *= mw / iw
    downsampled_bboxes[:, 3] *= mh / ih
    downsampled_bboxes[:, 1] *= mh / ih

    masks = crop_mask(masks, downsampled_bboxes)  # CHW
    if upsample:
        masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0]  # CHW
    return masks.gt_(0.5)


def process_mask_native(protos, masks_in, bboxes, shape):
    """
    It takes the output of the mask head, and crops it after upsampling to the bounding boxes.

    Args:
        protos (torch.Tensor): [mask_dim, mask_h, mask_w]
        masks_in (torch.Tensor): [n, mask_dim], n is number of masks after nms
        bboxes (torch.Tensor): [n, 4], n is number of masks after nms
        shape (tuple): the size of the input image (h,w)

    Returns:
        masks (torch.Tensor): The returned masks with dimensions [h, w, n]



    """
    c, mh, mw = protos.shape  # CHW
    masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
    masks = scale_masks(masks[None], shape)[0]  # CHW
    masks = crop_mask(masks, bboxes)  # CHW
    return masks.gt_(0.5)


def scale_masks(masks, shape, padding=True):
    """
    Rescale segment masks to shape.

    Args:
        masks (torch.Tensor): (N, C, H, W).
        shape (tuple): Height and width.
        padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
            rescaling.
    """
    mh, mw = masks.shape[2:]
    gain = min(mh / shape[0], mw / shape[1])  # gain  = old / new
    pad = [mw - shape[1] * gain, mh - shape[0] * gain]  # wh padding
    if padding:
        pad[0] /= 2
        pad[1] /= 2
    top, left = (int(round(pad[1] - 0.1)), int(round(pad[0] - 0.1))) if padding else (0, 0)  # y, x
    bottom, right = (int(round(mh - pad[1] + 0.1)), int(round(mw - pad[0] + 0.1)))
    masks = masks[..., top:bottom, left:right]

    masks = F.interpolate(masks, shape, mode='bilinear', align_corners=False)  # NCHW
    return masks


def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None, normalize=False, padding=True):
    """
    Rescale segment coordinates (xy) from img1_shape to img0_shape.

    Args:
        img1_shape (tuple): The shape of the image that the coords are from.
        coords (torch.Tensor): the coords to be scaled of shape n,2.
        img0_shape (tuple): the shape of the image that the segmentation is being applied to.
        ratio_pad (tuple): the ratio of the image size to the padded image size.
        normalize (bool): If True, the coordinates will be normalized to the range [0, 1]. Defaults to False.
        padding (bool): If True, assuming the boxes is based on image augmented by yolo style. If False then do regular
            rescaling.

    Returns:
        coords (torch.Tensor): The scaled coordinates.
    """
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    if padding:
        coords[..., 0] -= pad[0]  # x padding
        coords[..., 1] -= pad[1]  # y padding
    coords[..., 0] /= gain
    coords[..., 1] /= gain
    coords = clip_coords(coords, img0_shape)
    if normalize:
        coords[..., 0] /= img0_shape[1]  # width
        coords[..., 1] /= img0_shape[0]  # height
    return coords


def masks2segments(masks, strategy='largest'):
    """
    It takes a list of masks(n,h,w) and returns a list of segments(n,xy)

    Args:
        masks (torch.Tensor): the output of the model, which is a tensor of shape (batch_size, 160, 160)
        strategy (str): 'concat' or 'largest'. Defaults to largest

    Returns:
        segments (List): list of segment masks
    """
    segments = []
    for x in masks.int().cpu().numpy().astype('uint8'):
        c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
        if c:
            if strategy == 'concat':  # concatenate all segments
                c = np.concatenate([x.reshape(-1, 2) for x in c])
            elif strategy == 'largest':  # select largest segment
                c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
        else:
            c = np.zeros((0, 2))  # no segments found
        segments.append(c.astype('float32'))
    return segments


def convert_torch2numpy_batch(batch: torch.Tensor) -> np.ndarray:
    """
    Convert a batch of FP32 torch tensors (0.0-1.0) to a NumPy uint8 array (0-255), changing from BCHW to BHWC layout.

    Args:
        batch (torch.Tensor): Input tensor batch of shape (Batch, Channels, Height, Width) and dtype torch.float32.

    Returns:
        (np.ndarray): Output NumPy array batch of shape (Batch, Height, Width, Channels) and dtype uint8.
    """
    return (batch.permute(0, 2, 3, 1).contiguous() * 255).clamp(0, 255).to(torch.uint8).cpu().numpy()


def clean_str(s):
    """
    Cleans a string by replacing special characters with underscore _

    Args:
        s (str): a string needing special characters replaced

    Returns:
        (str): a string with special characters replaced by an underscore _
    """
    return re.sub(pattern='[|@#!¡·$€%&()=?¿^*;:,¨´><+]', repl='_', string=s)


#mask处理
def masks(img,masks, colors, im_gpu, alpha=0.5, retina_masks=False):
    """save masks at once.
    Args:
        masks (tensor): predicted masks on cuda, shape: [n, h, w]
        colors (List[List[Int]]): colors for predicted masks, [[r, g, b] * n]
        im_gpu (tensor): img is in cuda, shape: [3, h, w], range: [0, 1]
        alpha (float): mask transparency: 0.0 fully transparent, 1.0 opaque
    """
    if len(masks) == 0:
       img = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
    colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0
    colors = colors[:, None, None]  # shape(n,1,1,3)
    masks = masks.unsqueeze(3)  # shape(n,h,w,1)
    masks_color = masks * (colors * alpha)  # shape(n,h,w,3)

    inv_alph_masks = (1 - masks * alpha).cumprod(0)  # shape(n,h,w,1)
    mcs = (masks_color * inv_alph_masks).sum(0) * 2  # mask color summand shape(n,h,w,3)

    im_gpu = im_gpu.flip(dims=[0])  # flip channel
    im_gpu = im_gpu.permute(1, 2, 0).contiguous()  # shape(h,w,3)
    im_gpu = im_gpu * inv_alph_masks[-1] + mcs
    im_mask = (im_gpu * 255)
    im_mask_np = im_mask.byte().cpu().numpy()
    img = im_mask_np if retina_masks else scale_image(im_gpu.shape, im_mask_np, img.shape)

其中上面代码中的opt是官方代码,在models/utils/ops.py中,直接拿过来用就行了,以上的推理代码也是参考的训练模型的代码中的models/segments/predict.py函数,最终完成模型的部署。

4 测试结果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1397006.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Ubuntu系统Git的安装配置及使用笔记(更新中)

Ubuntu下Git的下载及配置 (1)、下载git 打开终端命令窗口,输入&#xff1a;sudo apt-get install git 提示&#xff1a;sudo命令是用来以其他身份来执行命令&#xff0c;预设的身份为root,使用sudo时必须先输入密码 (2)、可以使用命令git --version查看git的版本号 (3)、设置…

ChatGPT给出的前端面试考点(Vue.js)

ChatGPT给出的前端面试考点&#xff08;Vue.js&#xff09; 答案 1. Vue.js是什么&#xff1f;它的主要特点是什么&#xff1f; Vue.js是一个渐进式JavaScript框架&#xff0c;用于构建用户界面。它的主要特点包括&#xff1a; 数据绑定&#xff1a;Vue.js使用双向数据绑定&…

anaconda镜像源,查看镜像,删除镜像,添加镜像

查看镜像配置&#xff1a; conda config --show channel 对应的就是我们的镜像配置 删除旧镜像源 conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ 添加新镜像源&#xff1a; conda config --add channels https://mirrors.tu…

Next.js 开发指​南(GitHub 115k star​)

Next.js 是一个构建于 Node.js 之上的开源 Web 开发框架&#xff0c;它扩展了最新的 React 特性&#xff0c;集成了基于 Rust 的 JavaScript 工具&#xff0c;可以帮助你快速创建全栈 Web 应用 &#xff08;full-stack Web applications&#xff09; 。 对于有一定 React 基础…

TQ8WS-acid,Tide Quencher 8WS-酸,可用来研究荧光物质的激发态

您好&#xff0c;欢迎来到新研之家 文章关键词&#xff1a;Tide Quencher8WS acid&#xff0c;TQ8WS acid&#xff0c;Tide Quencher 8WS 酸 &#xff0c;TQ8WS 酸&#xff0c;Tide Quencher 8WS-酸&#xff0c;TQ8WS-酸 一、基本信息 产品简介&#xff1a;The fluorescence…

【算法与数据结构】Java实现查找与排序

文章目录 第一部分&#xff1a;查找算法二分查找插值查找分块查找哈希查找树表查找 第二部分&#xff1a;排序算法冒泡排序选择排序插入排序快速排序 总结 第一部分&#xff1a;查找算法 二分查找 也叫做折半查找&#xff0c;属于有序查找算法。 前提条件&#xff1a;数组数据…

Yearning存在任意文件读取漏洞

文章目录 前言声明一、Yearning简介二、漏洞描述三、影响版本四、漏洞复现五、修复建议 前言 Yearning MYSQL SQL语句审核平台。提供查询审计&#xff0c;SQL审核&#xff0c;SQL回滚&#xff0c;自定义工作流等多种功能。该平台存在任意文件读取漏洞。 声明 请勿利用文章内的…

OpenCV-Python(44):对极几何

目标 学习多视角几何基础学习什么是极点、极线、对极约束等 基本概念 在我们使用针孔相机时&#xff0c;我们会丢失大量重要的信息。比如说图像的深度&#xff0c;或者说图像上的点和摄像机的距离&#xff0c;因为这是一个从3D 到2D 的转换。因此一个重要的问题就产生了&…

[HTML]Web前端开发技术9(HTML5、CSS3、JavaScript )——喵喵画网页

希望你开心&#xff0c;希望你健康&#xff0c;希望你幸福&#xff0c;希望你点赞&#xff01; 最后的最后&#xff0c;关注喵&#xff0c;关注喵&#xff0c;关注喵&#xff0c;佬佬会看到更多有趣的博客哦&#xff01;&#xff01;&#xff01; 喵喵喵&#xff0c;你对我真的…

在线多端口排课教务管理工具:教育机构管理的得力助手

在现代教育中&#xff0c;教务管理是一个复杂而重要的任务。为了简化这一过程&#xff0c;许多在线教务管理工具应运而生。今天&#xff0c;我将向大家介绍一款名为乔拓云的在线多端口排课教务管理工具。 首先&#xff0c;乔拓云是一个功能强大的教务管理系统。它不仅提供了小程…

源码:Spring常规Bean创建过程

Bean创建过程&#xff1a; 一、版本 5.3.10二、学习内容 Bean创建过程源码三、Bean生命周期 时间轴地址&#xff1a;点击 四、bean创建过程脑图总结 脑图地址&#xff1a;点击 五、源码过程 说明&#xff1a; bean创建入口一般都是通过getBean(xxx);方法进入的&#xf…

【论文阅读】Can Large Language Models Empower Molecular Property Prediction?

文章目录 0、基本信息1、研究动机2、创新性3、方法论4、实验结果 0、基本信息 作者&#xff1a;Chen Qian, Huayi Tang, Zhirui Yang文章链接&#xff1a;Can Large Language Models Empower Molecular Property Prediction?代码链接&#xff1a;Can Large Language Models E…

Java项目:10 Springboot的电商书城管理系统

作者主页&#xff1a;源码空间codegym 简介&#xff1a;Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 该系统分为前台展示和后台管理两大模块&#xff0c;前台主要是为消费者服务。该子系统实现了注册&#xff0c;登录&#xff0c;以及从浏览、下…

栈、队列专题

文章目录 栈栈的概述栈的实现栈在函数调用中的应用栈在表达式求值中的应用逆波兰表达式求值 栈在括号匹配中的应用有效的括号最长的有效括号删除字符串中的所有相邻重复项 如何获取栈内最小元素呢如何实现浏览器的前进和后退 队列队列的定义队列的实现循环队列队列的应用队列在…

解决百度地图在模拟器上运行报 java.lang.IllegalArgumentException: No config chosen问题

解决百度地图在模拟器上运行报 java.lang.IllegalArgumentException: No config chosen 问题 1. 问题复现 在近期公司使用模拟器(网易MuMu)进行项目演示时&#xff0c;在进入存在百度地图(Android版本 7.4.2版本)之后&#xff0c;页面出现奔溃&#xff0c;后台日志为&#xf…

比吸收率(SAR)

本文旨在介绍比吸收率&#xff08;Specific Absorption Rate&#xff09;的基本知识。搬运自https://www.antenna-theory.com。英语够用的朋友可以直接移步。感谢网站创始人Peter Joseph Bevelacqua教授的无私奉献。 ------------------我是分隔线------------------- 比吸收…

Halcon 一维测量

文章目录 算子矩形算子弧形算子移动到新的参考点 Halcon 案例测量保险丝的宽度&#xff08;边缘对测量&#xff09;使用助手进行测量 halcon 案例获取芯片引脚的个数平均宽度距离&#xff0c;连续两个边缘的距离&#xff08;measure_pos &#xff09;halcon 定位测量Halcon 测量…

23 SEMC外扩SDRAM

文章目录 23.1 SDRAM 控制原理23.2 SEMC 简介 23.1 SDRAM 控制原理 RT1052 系列芯片扩展内存时可以选择 SRAM 和 SDRAM 由于 SDRAM 的“容量/价格”比较高&#xff0c;即使用 SDRAM 要比 SRAM 要划算得多。 给 RT1052 芯片扩展内存与给 PC 扩展内存的原理是一样的 PC 上一般…

庞伟:《一本书读懂企业破产法》——企业危机解决之道

在当今复杂多变的市场环境中&#xff0c;企业破产问题日益凸显。如何妥善解决企业危机&#xff0c;保障各方利益&#xff0c;成为了业界关注的焦点恰逢北京市亿达律师事务所成功入选第一届北京市破产管理人协会并成为会员单位之际&#xff0c;为此&#xff0c;北京市亿达律师事…

(2023版)斯坦福CS231n学习笔记:DL与CV教程 (56) | 卷积神经网络

前言 &#x1f4da; 笔记专栏&#xff1a;斯坦福CS231N&#xff1a;面向视觉识别的卷积神经网络&#xff08;23&#xff09;&#x1f517; 课程链接&#xff1a;https://www.bilibili.com/video/BV1xV411R7i5&#x1f4bb; CS231n: 深度学习计算机视觉&#xff08;2017&#xf…