OpenCV-Python(44):对极几何

news2024/11/16 21:45:39

目标

  • 学习多视角几何基础
  • 学习什么是极点、极线、对极约束等

基本概念

        在我们使用针孔相机时,我们会丢失大量重要的信息。比如说图像的深度,或者说图像上的点和摄像机的距离,因为这是一个从3D 到2D 的转换。因此一个重要的问题就产生了,使用这样的摄像机我们能否计算出深度信息呢?答案就是使用多个相机。我们的眼睛就是这样工作的,使用两个摄像机(两个眼睛),这被称为立体视觉。下面让我们来看看OpenCV 在这方面给我们都提供了什么吧。值得一提的是《学习OpenCV》一书中有大量的这方面相关知识。

        在进入深度图像之前,我们要先掌握一些多视角几何的基本概念。在本节中我们要处理对极几何。下图为使用两台摄像机同时对一个一个场景进行拍摄的示意图。

        如果只是用一台摄像机我们不可能知道 3D 空间中的X 点到图像平面的距离,因为OX 线上的每个点投影到图像平面上的点都是相同的。但是如果我们也考虑上右侧图像的话,直线OX 上的点将投影到右侧图像上的不同位置。所以根据这两幅图像,我们就可以使用三角测量计算出3D 空间中的点到摄像机的距离(深度)。这就是整个思路。 

        直线OX 上的不同点投射到右侧图像上形成的线l′ 被称为与x 点对应的极线。也就是说我们可以在右侧图像中沿着这条极线找到x 点。它可能在这条直线上某个位置(这意味着对两幅图像的匹配特征的二维搜索就变成了沿着极线的一维搜索。这不仅节省了大量的计算,还允许我们排除很多导致虚假匹配的点)。这被称为对极约束。与此相同,所有的点在其他图像中都有与之对应的极线。平面 XOO' 被称为对极平面。

        O 和O' 是摄像机的中心。从上面的示意图可以看出,右侧摄像机的中心O' 投影到左侧图像平面的e 点,这个点就被称为极点。极点就是摄像机中心连线与图像平面的交点。因此点e' 是左侧摄像机的极点。有些情况下,我们可能不会在图像中找到极点,它们可能落在了图像之外,这说明􄦈两个摄像机不能拍摄到彼此。

        所有的极线都要经过极点。所以为了找到极点的位置,我们可以先找到多条极线,这些极线的交点就是极点。

        本节我们的重点就是找到极线和极点。为了找到它们,我们还需要两个元素本征矩阵E和基础矩阵F。本征矩阵包含了物理空间中两个摄像机相关的旋转和平移信息。如下图所示:

        基础矩阵 F 除了包含E 的信息外还包含了两个摄像机的内参数。由于F包含了这些内参数,因此它可以它在像素坐标系将两台摄像机关联起来。(如果使用是校正之后的图像并通过除以焦距进行了归一化,F=E)。简单来说,基础矩阵 F 将一副图像中的点映射到另一幅图像中的线(极线)上。这是通过匹配两幅图像上的点来实现的。要计算基础矩阵至少需要 8 个点(使用8 点算法)。点约多越好,可以使用RANSAC 算法得到更加稳定的结果。 

代码

        为了得到基础矩阵,我们应该在两幅图像中找到尽量多的匹配点。我们可以使用SIFT 描述符,FLANN 匹配器和比值检测。

import cv2
import numpy as np
from matplotlib import pyplot as plt

img1 = cv2.imread('myleft.jpg',0) #queryimage # left image
img2 = cv2.imread('myright.jpg',0) #trainimage # right image
sift = cv2.SIFT()

# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)

# FLANN parameters
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params,search_params)
matches = flann.knnMatch(des1,des2,k=2)
good = []
pts1 = []
pts2 = []
# ratio test as per Lowe's paper
for i,(m,n) in enumerate(matches):
    if m.distance < 0.8*n.distance:
        good.append(m)
        pts2.append(kp2[m.trainIdx].pt)
        pts1.append(kp1[m.queryIdx].pt)

        现在得到了一个匹配点列表,我们就可以使用它来计算基础矩阵了。 

pts1 = np.int32(pts1)
pts2 = np.int32(pts2)
F, mask = cv2.findFundamentalMat(pts1,pts2,cv2.FM_LMEDS)
# We select only inlier points
pts1 = pts1[mask.ravel()==1]
pts2 = pts2[mask.ravel()==1]

 下一步我们要找到极线。我们会得到一个包含很多线的数组。所以我们要定义一个新的函数将这些线绘制到图像中。

def drawlines(img1,img2,lines,pts1,pts2):
    ''' img1 - image on which we draw the epilines for the points in img2
    lines - corresponding epilines '''
    r,c = img1.shape
    img1 = cv2.cvtColor(img1,cv2.COLOR_GRAY2BGR)
    img2 = cv2.cvtColor(img2,cv2.COLOR_GRAY2BGR)
    for r,pt1,pt2 in zip(lines,pts1,pts2):
        color = tuple(np.random.randint(0,255,3).tolist())
        x0,y0 = map(int, [0, -r[2]/r[1] ])
        x1,y1 = map(int, [c, -(r[2]+r[0]*c)/r[1] ])
        img1 = cv2.line(img1, (x0,y0), (x1,y1), color,1)
        img1 = cv2.circle(img1,tuple(pt1),5,color,-1)
        img2 = cv2.circle(img2,tuple(pt2),5,color,-1)
    return img1,img2

现在我们两幅图像中计算并绘制极线。 

# Find epilines corresponding to points in right image (second image) and
# drawing its lines on left image
lines1 = cv2.computeCorrespondEpilines(pts2.reshape(-1,1,2), 2,F)
lines1 = lines1.reshape(-1,3)
img5,img6 = drawlines(img1,img2,lines1,pts1,pts2)
# Find epilines corresponding to points in left image (first image) and
# drawing its lines on right image
lines2 = cv2.computeCorrespondEpilines(pts1.reshape(-1,1,2), 1,F)
lines2 = lines2.reshape(-1,3)
img3,img4 = drawlines(img2,img1,lines2,pts2,pts1)
plt.subplot(121),plt.imshow(img5)
plt.subplot(122),plt.imshow(img3)
plt.show()

下面是我得到的结果: 

        从上图可以看出所有的极线都汇聚以图像外的一点,这个点就是极点。为了得到更好的结果,我们应该使用分辨率比较高的图像和non-planar点。
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1396988.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[HTML]Web前端开发技术9(HTML5、CSS3、JavaScript )——喵喵画网页

希望你开心&#xff0c;希望你健康&#xff0c;希望你幸福&#xff0c;希望你点赞&#xff01; 最后的最后&#xff0c;关注喵&#xff0c;关注喵&#xff0c;关注喵&#xff0c;佬佬会看到更多有趣的博客哦&#xff01;&#xff01;&#xff01; 喵喵喵&#xff0c;你对我真的…

在线多端口排课教务管理工具:教育机构管理的得力助手

在现代教育中&#xff0c;教务管理是一个复杂而重要的任务。为了简化这一过程&#xff0c;许多在线教务管理工具应运而生。今天&#xff0c;我将向大家介绍一款名为乔拓云的在线多端口排课教务管理工具。 首先&#xff0c;乔拓云是一个功能强大的教务管理系统。它不仅提供了小程…

源码:Spring常规Bean创建过程

Bean创建过程&#xff1a; 一、版本 5.3.10二、学习内容 Bean创建过程源码三、Bean生命周期 时间轴地址&#xff1a;点击 四、bean创建过程脑图总结 脑图地址&#xff1a;点击 五、源码过程 说明&#xff1a; bean创建入口一般都是通过getBean(xxx);方法进入的&#xf…

【论文阅读】Can Large Language Models Empower Molecular Property Prediction?

文章目录 0、基本信息1、研究动机2、创新性3、方法论4、实验结果 0、基本信息 作者&#xff1a;Chen Qian, Huayi Tang, Zhirui Yang文章链接&#xff1a;Can Large Language Models Empower Molecular Property Prediction?代码链接&#xff1a;Can Large Language Models E…

Java项目:10 Springboot的电商书城管理系统

作者主页&#xff1a;源码空间codegym 简介&#xff1a;Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 该系统分为前台展示和后台管理两大模块&#xff0c;前台主要是为消费者服务。该子系统实现了注册&#xff0c;登录&#xff0c;以及从浏览、下…

栈、队列专题

文章目录 栈栈的概述栈的实现栈在函数调用中的应用栈在表达式求值中的应用逆波兰表达式求值 栈在括号匹配中的应用有效的括号最长的有效括号删除字符串中的所有相邻重复项 如何获取栈内最小元素呢如何实现浏览器的前进和后退 队列队列的定义队列的实现循环队列队列的应用队列在…

解决百度地图在模拟器上运行报 java.lang.IllegalArgumentException: No config chosen问题

解决百度地图在模拟器上运行报 java.lang.IllegalArgumentException: No config chosen 问题 1. 问题复现 在近期公司使用模拟器(网易MuMu)进行项目演示时&#xff0c;在进入存在百度地图(Android版本 7.4.2版本)之后&#xff0c;页面出现奔溃&#xff0c;后台日志为&#xf…

比吸收率(SAR)

本文旨在介绍比吸收率&#xff08;Specific Absorption Rate&#xff09;的基本知识。搬运自https://www.antenna-theory.com。英语够用的朋友可以直接移步。感谢网站创始人Peter Joseph Bevelacqua教授的无私奉献。 ------------------我是分隔线------------------- 比吸收…

Halcon 一维测量

文章目录 算子矩形算子弧形算子移动到新的参考点 Halcon 案例测量保险丝的宽度&#xff08;边缘对测量&#xff09;使用助手进行测量 halcon 案例获取芯片引脚的个数平均宽度距离&#xff0c;连续两个边缘的距离&#xff08;measure_pos &#xff09;halcon 定位测量Halcon 测量…

23 SEMC外扩SDRAM

文章目录 23.1 SDRAM 控制原理23.2 SEMC 简介 23.1 SDRAM 控制原理 RT1052 系列芯片扩展内存时可以选择 SRAM 和 SDRAM 由于 SDRAM 的“容量/价格”比较高&#xff0c;即使用 SDRAM 要比 SRAM 要划算得多。 给 RT1052 芯片扩展内存与给 PC 扩展内存的原理是一样的 PC 上一般…

庞伟:《一本书读懂企业破产法》——企业危机解决之道

在当今复杂多变的市场环境中&#xff0c;企业破产问题日益凸显。如何妥善解决企业危机&#xff0c;保障各方利益&#xff0c;成为了业界关注的焦点恰逢北京市亿达律师事务所成功入选第一届北京市破产管理人协会并成为会员单位之际&#xff0c;为此&#xff0c;北京市亿达律师事…

(2023版)斯坦福CS231n学习笔记:DL与CV教程 (56) | 卷积神经网络

前言 &#x1f4da; 笔记专栏&#xff1a;斯坦福CS231N&#xff1a;面向视觉识别的卷积神经网络&#xff08;23&#xff09;&#x1f517; 课程链接&#xff1a;https://www.bilibili.com/video/BV1xV411R7i5&#x1f4bb; CS231n: 深度学习计算机视觉&#xff08;2017&#xf…

多目标优化中常用的差分进化算法DE【2】

# 多目标优化中常用的进化算法 1、链接一 2、链接二 #后续继续补充多目标的差分进化算法MODE的应用 此链接介绍很详细&#xff0c;此处用来分享学习&#xff0c;后续有问题会继续进行补充。 如果你觉得不错&#xff0c;佛系随缘打赏&#xff0c;感谢&#xff0c;你的支持是…

(六)深入理解Bluez协议栈之“GATT Client Profile”

前言: 本章节我们继续介绍GATT Client Profile的实现,参考的程序是tools\btgatt-client.c,需要注意的一点,在./configure时,需要添加 --enable-test --enable-testing才会编译该c文件,编译完成后,生成的可执行程序为btgatt-client。本文主要以btgatt-client运行时可能会…

分布式ID(2):雪花算法生成ID

1 雪花算法简介 这种方案大致来说是一种以划分命名空间(UUID也算,由于比较常见,所以单独分析)来生成ID的一种算法,这种方案把64-bit分别划分成多段,分开来标示机器、时间等,比如在snowflake中的64-bit分别表示如下图(图片来自网络)所示: 41-bit的时间可以表示(1L&l…

ARM 1.16

TCP的特点 面向连接 面向连接&#xff0c;是指发送数据之前必须在两端建立连接。建立连接的方法是“三次握手”&#xff0c;这样能建立可靠的连接。建立连接&#xff0c;是为数据的可靠传输打下了基础。 仅支持单播传输 每条TCP传输连接只能有两个端点&#…

面试题16.15.珠玑妙算

前言 这两天突然发现力扣上还是有我能写出来的题的&#xff0c;虽说都是简单级别的&#xff08;以及一道中等的题&#xff09;&#xff0c;但是能写出来力扣真的太开心了&#xff0c;&#xff08;大佬把我这段话当个玩笑就行了&#xff09;&#xff0c;于是乎&#xff0c;我觉…

linux单机部署mysql(离线环境解压即可)

一、下载官网压缩包&#xff08;tar.gz&#xff09; MySQL :: Download MySQL Community Serverhttps://dev.mysql.com/downloads/mysql/根据自己的操作系统发行版本、位数、gclib版本、mysql版本来选择对应的压缩包 比如我是 linux系统debian10&#xff08;官网只有linux ge…

Doris配置外表以及多个Hive外表的配置

1.场景分析 以Clickhouse、Doris、Starrocks等为代表的mpp分析数据库正在快速的兴起&#xff0c;以其高效查询、跨库整合能力收到广大技术人员的喜爱。本文主要浅显介绍下作者在使用Doris时&#xff0c;通过建立catlog进行跨库查询。 废话不多少&#xff0c;直接上代码 2.相关…

RIP基础实验配置

要使用RIP完成以上命令需求 1&#xff0c;首先划分ip地址 有图可见有四个网段需要划分 192.168.1.0/26 192.168.3.0/26 192.168.7.0/26 192.168.5.0/26 给两个骨干网段&#xff0c;给两个环回接口&#xff0c;由下图所示&#xff1a; 其次&#xff0c;规划好ip后在各个接口…