Maxwell介绍

news2024/11/18 11:25:35

一、介绍

介绍:它读取MySQL binlog并将数据更改作为JSON写入Kafka、Kinesis和其他流媒体平台(目前支持:kafka、RabbitMQ、Redis、file、Kinesis、Nats、Google Cloud Pub/Sub、Google Cloud Bigquery、SNS)
版本:从v1.30.0版本开始不支持jdk1.8,支持jdk11,所以推荐使用v1.29.2版本
在这里插入图片描述

官网:https://maxwells-daemon.io/

二、安装配置

下载地址:https://github.com/zendesk/maxwell/releases/tag/v1.29.2

2.1、开启mysql binlog

# /etc/my.cnf

[mysqld]
#数据库id
server-id = 1
#启动binlog,该参数的值会作为binlog的文件名
log-bin=mysql-bin
#binlog类型,maxwell要求为row类型
binlog_format=row
#启用binlog的数据库,需根据实际情况作出修改
binlog-do-db=demo

2.2、解压缩

tar -zxvf maxwell-1.29.2.tar.gz -C maxwell

三、启动

启动命令执行之后会自动在对应的数据库中创建maxwell数据库用于存放元数据

3.1、将数据发送到kafka

bin/maxwell --user='maxwell' --password='XXXXXX' --host='127.0.0.1' \
   --producer=kafka --kafka.bootstrap.servers=localhost:9092 --kafka_topic=maxwell

3.2、将数据发送到rabbitmq

bin/maxwell --user='maxwell' --password='XXXXXX' --host='127.0.0.1' \
    --producer=rabbitmq --rabbitmq_host='rabbitmq.hostname'

3.3、将数据发送到redis

bin/maxwell --user='maxwell' --password='XXXXXX' --host='127.0.0.1' \
    --producer=redis --redis_host=redis.hostname

3.4、使用docker的方式将数据发送到kafka

docker run -it --rm zendesk/maxwell bin/maxwell --user=$MYSQL_USERNAME \
    --password=$MYSQL_PASSWORD --host=$MYSQL_HOST --producer=kafka \
    --kafka.bootstrap.servers=$KAFKA_HOST:$KAFKA_PORT --kafka_topic=maxwell

四、高可用

官网:https://maxwells-daemon.io/high_availability/
maxwell v1.29.2 版本不支持高可用,但是提供了采用 jgroups-raft 算法的高可用方案

五、过滤表

同步指定数据库的数据,支持一下两种方式进行过滤

--filter = 'exclude: foodb.*, include: foodb.tbl, include: foodb./table_\d+/'


--filter = 'exclude: *.*, include: db1.*'

六、全量同步

bin/maxwell-bootstrap --database fooDB --table barTable

bin/maxwell-bootstrap --database fooDB --table barTable --where "my_date >= '2017-01-07 00:00:00'"

七、总结

maxwell是一款采用Java开发的mysql数据同步中间件,支持全量/增量数据的同步,数据采用JSON的方式传输,无其他格式,不支持高可用,使用简单。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1395731.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Git教程学习:01 Git简介与安装

目录 1 版本控制1.1 什么是版本控制系统?1.2 本地版本控制系统1.3 集中式版本控制系统1.4 分布式版本控制系统 2 Git简史3 Git的安装3.1 在Linux上安装3.2 初次运行Git前的配置 1 版本控制 1.1 什么是版本控制系统? 版本控制系统(Version Control Syst…

css 居中方式

居中分为水平居中和垂直居中 1. 水平居中1.1 文字text-align:center;1.2 盒子1.2.1:inline-block text-align 一 center;1.2.2:absolutetransform 一 父元素 display:relative;子元素 display:absolute; left:50%;transform: translatex(-50%);1.2.3&a…

一个好用的工具,对网工来说是绝杀技!

上午好,我是老杨。 提到用人,很多单位和管理者第一反应都是应聘者的能力。能力到底怎么界定,其实每个人都有不同的判定标准。 在我看来,做事专注,且能尽可能“偷懒”的网工 ,就是我个人筛选员工的标准。 …

游戏开发要注意这几个问题

游戏开发是一个充满创意和挑战的过程。对于初学者和经验丰富的开发者来说,每个项目都是一个新的学习机会。然而,成功的游戏开发不仅仅是关于编码和设计;它还涉及到细致的规划、测试和市场洞察。以下是在开发游戏时需要特别注意的几个关键方面…

CentOS stream 9配置网卡

CentOS stream9的网卡和centos 7的配置路径:/etc/sysconfig/network-scripts/ifcfg-ens32不一样。 CentOS stream 9的网卡路径: /etc/NetworkManager/system-connections/ens32.nmconnection 方法一: [connection] idens32 uuid426b60a4-4…

区间预测 | Matlab实现LSTM-Adaboost-ABKDE的集成学习长短期记忆神经网络自适应带宽核密度估计多变量回归区间预测

区间预测 | Matlab实现LSTM-Adaboost-ABKDE的集成学习长短期记忆神经网络自适应带宽核密度估计多变量回归区间预测 目录 区间预测 | Matlab实现LSTM-Adaboost-ABKDE的集成学习长短期记忆神经网络自适应带宽核密度估计多变量回归区间预测效果一览基本介绍程序设计参考资料 效果一…

npm install 安装出错时尝试过的方法

使用npm cache clean --force清除缓存,然后将安装失败的项目中的node_modules文件夹以及package-lock.json文件删除(package-lock.json是在npm install安装时生成的一份文件,用以记录当前状态下实际安装的各个npm package的具体来源和版本号&…

探索设计模式的魅力:抽象工厂模式的艺术

抽象工厂模式(Abstract Factory Pattern)是一种创建型设计模式,用于在不指定具体类的情况下创建一系列相关或相互依赖的对象。它提供了一个接口,用于创建一系列“家族”或相关依赖对象,而无需指定它们的具体类。 主要参…

Linux安装ossutil工具且在Jenkins中执行shell脚本下载文件

测试中遇到想通过Jenkins下载OSS桶上的文件,要先在linux上安装ossutil工具,记录安装过程如下: 一、下载安装ossutil,使用命令 1.下载:wget https://gosspublic.alicdn.com/ossutil/1.7.13/ossutil64 2.一定要赋权限…

大创项目推荐 深度学习的视频多目标跟踪实现

文章目录 1 前言2 先上成果3 多目标跟踪的两种方法3.1 方法13.2 方法2 4 Tracking By Detecting的跟踪过程4.1 存在的问题4.2 基于轨迹预测的跟踪方式 5 训练代码6 最后 1 前言 🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的视频多目标跟踪实现 …

服务器数据恢复—OceanStor存储raid5热备盘同步数据失败的数据恢复案例

服务器数据恢复环境: 华为OceanStor某型号存储,存储内有一组由24块硬盘组建的raid5阵列,配置1块热备盘。 服务器故障: 该存储raid5阵列中有一块硬盘离线,热备盘自动激活并开始同步数据,在热备盘同步数据的…

C400/10/1/1/1/00嵌入式系统中的模块动态加载技术

基于模块化设计的嵌入式软件测试方法 "... 进行分析。 关键词:模块化设计 嵌入式软件 软件测试 ... 相对较小的模块。为了减少模块与模块之间的关联性,模块之间的逻辑结构 ... 执行后发生错误,则由模块B和模块&…

【Alibaba工具型技术系列】「EasyExcel技术专题」摒除OOM!让你的Excel操作变得更加优雅和安全

摒除OOM!让你的Excel操作变得更加优雅和安全 前提概要存在隐患问题解决方案更优秀的选择 EasyExcel的介绍说明技术原理对比POIEasyExcel技术原理图节省内存的开销 Maven仓库依赖基础API介绍(参考官方文档)实战案例读取Excel实现Demo数据模型D…

网络性能评估工具Iperf

一、网络性能评估工具Iperf Iperf是一款基于TCP/IP和UDP/IP的网络性能测试工具,它可以用来测量网络带宽和网络质量,还可以提供网络延迟抖动、数据包丢失率、***传输单元等统计信息。网络管理员可以根据这些信息了解并判断网络性能问题,从而定…

Statistics with Python: Week2 Nhanes Assignment

这门课不知出于什么原因比较小众,如果有人在做,在week2的assignment中出现问题,希望我的回答可以帮到你。 这个作业的目的就是抓取nhanes(美国健康与营养检测)2015-2016的数据,然后计算平均数/中位数/方差…

如何利用SD-WAN升级企业网络,混合组网稳定性更高?

随着企业信息化的升级,传统网络架构已经无法满足企业复杂的、多样化的组网互联需求。 企业多样化的组网需求包括: 一是需要将各办公点互联起来进行数据传输、资源共享; 二是视频会议、ERP、OA、邮箱系统、云服务应用程序等访问需求&#xff…

71.网游逆向分析与插件开发-角色数据的获取-修复角色名与等级显示问题

内容参考于:易道云信息技术研究院VIP课 上一个内容:自动化助手UI显示角色数据-CSDN博客 码云地址(ui显示角色数据 分支):https://gitee.com/dye_your_fingers/sro_-ex.git 码云版本号:0049452c079867779…

ChatGLM3报错:No chat template is defined for this tokenizer

使用官方提供的脚本创建ChatGLM3的DEMO&#xff1a; cd basic_demo python web_demo_gradio.py 出现效果异常问题&#xff1a; conversation [{role: user, content: 你好}, {role: assistant, content: 你好&#xff0c;有什么我可以帮助你的吗&#xff1f;\n\n<|im_end|…

数字时代的大对决

数字时代如今正酝酿着一场大对决&#xff0c;浏览器、艺术品、音乐平台和社交通信的巅峰之战正在发生。Brave、Yuga Labs、Audius和Discord分别对标着Chrome、Disney、Spotify和WhatsApp&#xff0c;这场数字时代的较量不仅涉及浏览器、艺术品、音乐平台和社交通信的竞争&#…

基于YOLOv8深度学习的100种中草药智能识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…