大创项目推荐 深度学习的视频多目标跟踪实现

news2024/11/18 11:51:13

文章目录

  • 1 前言
  • 2 先上成果
  • 3 多目标跟踪的两种方法
    • 3.1 方法1
    • 3.2 方法2
  • 4 Tracking By Detecting的跟踪过程
    • 4.1 存在的问题
    • 4.2 基于轨迹预测的跟踪方式
  • 5 训练代码
  • 6 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的视频多目标跟踪实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 先上成果

在这里插入图片描述

3 多目标跟踪的两种方法

3.1 方法1

基于初始化帧的跟踪,在视频第一帧中选择你的目标,之后交给跟踪算法去实现目标的跟踪。这种方式基本上只能跟踪你第一帧选中的目标,如果后续帧中出现了新的物体目标,算法是跟踪不到的。这种方式的优点是速度相对较快。缺点很明显,不能跟踪新出现的目标。

3.2 方法2

基于目标检测的跟踪,在视频每帧中先检测出来所有感兴趣的目标物体,然后将其与前一帧中检测出来的目标进行关联来实现跟踪的效果。这种方式的优点是可以在整个视频中跟踪随时出现的新目标,当然这种方式要求你前提得有一个好的“目标检测”算法。

学长主要分享Option2的实现原理,也就是Tracking By Detecting的跟踪方式。

4 Tracking By Detecting的跟踪过程

**Step1:**使用目标检测算法将每帧中感兴趣的目标检测出来,得到对应的(位置坐标, 分类, 可信度),假设检测到的目标数量为M;

**Step2:**通过某种方式将Step1中的检测结果与上一帧中的检测目标(假设上一帧检测目标数量为N)一一关联起来。换句话说,就是在M*N个Pair中找出最像似的Pair。

对于Step2中的“某种方式”,其实有多种方式可以实现目标的关联,比如常见的计算两帧中两个目标之间的欧几里得距离(平面两点之间的直线距离),距离最短就认为是同一个目标,然后通过匈牙利算法找出最匹配的Pair。当让,你还可以加上其他的判断条件,比如我用到的IOU,计算两个目标Box(位置大小方框)的交并比,该值越接近1就代表是同一个目标。还有其他的比如判断两个目标的外观是否相似,这就需要用到一种外观模型去做比较了,可能耗时更长。

在关联的过程中,会出现三种情况:

1)在上一帧中的N个目标中找到了本次检测到的目标,说明正常跟踪到了;

2)在上一帧中的N个目标中没有找到本次检测到的目标,说明这个目标是这一帧中新出现的,所以我们需要把它记录下来,用于下下一次的跟踪关联;

3)在上一帧中存在某个目标,这一帧中并没有与之关联的目标,那么说明该目标可能从视野中消失了,我们需要将其移除。(注意这里的可能,因为有可能由于检测误差,在这一帧中该目标并没有被检测到)

在这里插入图片描述

4.1 存在的问题

上面提到的跟踪方法在正常情况下都能够很好的工作,但是如果视频中目标运动得很快,前后两帧中同一个目标运动的距离很远,那么这种跟踪方式就会出现问题。

在这里插入图片描述
如上图,实线框表示目标在第一帧的位置,虚线框表示目标在第二帧的位置。当目标运行速度比较慢的时候,通过之前的跟踪方式可以很准确的关联(A, A’)和(B,
B’)。但是当目标运行速度很快(或者隔帧检测)时,在第二帧中,A就会运动到第一帧中B的位置,而B则运动到其他位置。这个时候使用上面的关联方法就会得到错误的结果。

那么怎样才能更加准确地进行跟踪呢?

4.2 基于轨迹预测的跟踪方式

既然通过第二帧的位置与第一帧的位置进行对比关联会出现误差,那么我们可以想办法在对比之前,先预测目标的下一帧会出现的位置,然后与该预测的位置来进行对比关联。这样的话,只要预测足够精确,那么几乎不会出现前面提到的由于速度太快而存在的误差

在这里插入图片描述

如上图,我们在对比关联之前,先预测出A和B在下一帧中的位置,然后再使用实际的检测位置与预测的位置进行对比关联,可以完美地解决上面提到的问题。理论上,不管目标速度多么快,都能关联上。那么问题来了,怎么预测目标在下一帧的位置?

方法有很多,可以使用卡尔曼滤波来根据目标前面几帧的轨迹来预测它下一帧的位置,还可以使用自己拟合出来的函数来预测下一帧的位置。实际过程中,我是使用拟合函数来预测目标在下一帧中的位置。

在这里插入图片描述
如上图,通过前面6帧的位置,我可以拟合出来一条(T->XY)的曲线(注意不是图中的直线),然后预测目标在T+1帧的位置。具体实现很简单,Python中的numpy库中有类似功能的方法。

5 训练代码

这里记录一下训练代码,来日更新

 if FLAGS.mode == 'eager_tf':
        # Eager mode is great for debugging
        # Non eager graph mode is recommended for real training
        avg_loss = tf.keras.metrics.Mean('loss', dtype=tf.float32)
        avg_val_loss = tf.keras.metrics.Mean('val_loss', dtype=tf.float32)

        for epoch in range(1, FLAGS.epochs + 1):
            for batch, (images, labels) in enumerate(train_dataset):
                with tf.GradientTape() as tape:
                    outputs = model(images, training=True)
                    regularization_loss = tf.reduce_sum(model.losses)
                    pred_loss = []
                    for output, label, loss_fn in zip(outputs, labels, loss):
                        pred_loss.append(loss_fn(label, output))
                    total_loss = tf.reduce_sum(pred_loss) + regularization_loss

                grads = tape.gradient(total_loss, model.trainable_variables)
                optimizer.apply_gradients(
                    zip(grads, model.trainable_variables))

                logging.info("{}_train_{}, {}, {}".format(
                    epoch, batch, total_loss.numpy(),
                    list(map(lambda x: np.sum(x.numpy()), pred_loss))))
                avg_loss.update_state(total_loss)

            for batch, (images, labels) in enumerate(val_dataset):
                outputs = model(images)
                regularization_loss = tf.reduce_sum(model.losses)
                pred_loss = []
                for output, label, loss_fn in zip(outputs, labels, loss):
                    pred_loss.append(loss_fn(label, output))
                total_loss = tf.reduce_sum(pred_loss) + regularization_loss

                logging.info("{}_val_{}, {}, {}".format(
                    epoch, batch, total_loss.numpy(),
                    list(map(lambda x: np.sum(x.numpy()), pred_loss))))
                avg_val_loss.update_state(total_loss)

            logging.info("{}, train: {}, val: {}".format(
                epoch,
                avg_loss.result().numpy(),
                avg_val_loss.result().numpy()))

            avg_loss.reset_states()
            avg_val_loss.reset_states()
            model.save_weights(
                'checkpoints/yolov3_train_{}.tf'.format(epoch))

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1395719.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

服务器数据恢复—OceanStor存储raid5热备盘同步数据失败的数据恢复案例

服务器数据恢复环境: 华为OceanStor某型号存储,存储内有一组由24块硬盘组建的raid5阵列,配置1块热备盘。 服务器故障: 该存储raid5阵列中有一块硬盘离线,热备盘自动激活并开始同步数据,在热备盘同步数据的…

C400/10/1/1/1/00嵌入式系统中的模块动态加载技术

基于模块化设计的嵌入式软件测试方法 "... 进行分析。 关键词:模块化设计 嵌入式软件 软件测试 ... 相对较小的模块。为了减少模块与模块之间的关联性,模块之间的逻辑结构 ... 执行后发生错误,则由模块B和模块&…

【Alibaba工具型技术系列】「EasyExcel技术专题」摒除OOM!让你的Excel操作变得更加优雅和安全

摒除OOM!让你的Excel操作变得更加优雅和安全 前提概要存在隐患问题解决方案更优秀的选择 EasyExcel的介绍说明技术原理对比POIEasyExcel技术原理图节省内存的开销 Maven仓库依赖基础API介绍(参考官方文档)实战案例读取Excel实现Demo数据模型D…

网络性能评估工具Iperf

一、网络性能评估工具Iperf Iperf是一款基于TCP/IP和UDP/IP的网络性能测试工具,它可以用来测量网络带宽和网络质量,还可以提供网络延迟抖动、数据包丢失率、***传输单元等统计信息。网络管理员可以根据这些信息了解并判断网络性能问题,从而定…

Statistics with Python: Week2 Nhanes Assignment

这门课不知出于什么原因比较小众,如果有人在做,在week2的assignment中出现问题,希望我的回答可以帮到你。 这个作业的目的就是抓取nhanes(美国健康与营养检测)2015-2016的数据,然后计算平均数/中位数/方差…

如何利用SD-WAN升级企业网络,混合组网稳定性更高?

随着企业信息化的升级,传统网络架构已经无法满足企业复杂的、多样化的组网互联需求。 企业多样化的组网需求包括: 一是需要将各办公点互联起来进行数据传输、资源共享; 二是视频会议、ERP、OA、邮箱系统、云服务应用程序等访问需求&#xff…

71.网游逆向分析与插件开发-角色数据的获取-修复角色名与等级显示问题

内容参考于:易道云信息技术研究院VIP课 上一个内容:自动化助手UI显示角色数据-CSDN博客 码云地址(ui显示角色数据 分支):https://gitee.com/dye_your_fingers/sro_-ex.git 码云版本号:0049452c079867779…

ChatGLM3报错:No chat template is defined for this tokenizer

使用官方提供的脚本创建ChatGLM3的DEMO&#xff1a; cd basic_demo python web_demo_gradio.py 出现效果异常问题&#xff1a; conversation [{role: user, content: 你好}, {role: assistant, content: 你好&#xff0c;有什么我可以帮助你的吗&#xff1f;\n\n<|im_end|…

数字时代的大对决

数字时代如今正酝酿着一场大对决&#xff0c;浏览器、艺术品、音乐平台和社交通信的巅峰之战正在发生。Brave、Yuga Labs、Audius和Discord分别对标着Chrome、Disney、Spotify和WhatsApp&#xff0c;这场数字时代的较量不仅涉及浏览器、艺术品、音乐平台和社交通信的竞争&#…

基于YOLOv8深度学习的100种中草药智能识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

uniapp实现微信小程序富文本之mp-html插件详解

uniapp实现微信小程序富文本之mp-html插件 1 文章背景1.1 正则表达式1.2 mp-html插件1.3 uniapp 2 过程详解2.1 下载mp-html插件2.2 项目中引入mp-html2.3 引入正则规范图片自适应2.4 效果展示 3 全部代码 1 文章背景 1.1 正则表达式 正则表达式&#xff0c;又称规则表达式,&…

游泳耳机怎么选?国产十大游泳耳机排行榜TOP4品牌

随着人们对健康生活的追求和对多样化运动方式的探索&#xff0c;游泳作为一项完美的全身运动逐渐受到更多人的喜爱。在游泳过程中&#xff0c;佩戴一副优质的游泳耳机&#xff0c;不仅可以享受音乐的陪伴&#xff0c;还能让您更好地沉浸在水下世界中。本文将为大家推荐国产十大…

微信小程序 image bindload 事件不触发,图片加载不出来

问题&#xff1a; 当小程序图片页面反复跳转时&#xff0c;或者微信打开小程序页面之后&#xff0c;处于后台运行。 图片加载不出来&#xff0c;我图片加载是通过bindload事件不判断是否下载完成再显示。但是现在bindload不触发&#xff0c;一直显示加载层。 分析&#xff1…

查看神经网络中间层特征矩阵及卷积核参数

可视化feature maps以及kernel weights&#xff0c;使用alexnet模型进行演示。 1. 查看中间层特征矩阵 alexnet模型&#xff0c;修改了向前传播 import torch from torch import nn from torch.nn import functional as F# 对花图像数据进行分类 class AlexNet(nn.Module):d…

Elasticsearch8 集群搭建(二)配置篇:(3)安全配置

此篇记录Elasticsearch 8.x传输层的安全配置。 传输层节点间&#xff1a; 如果集群有多个节点&#xff0c;必须在节点间配置TLS。生产模式下&#xff0c;如果不启用TLS&#xff0c;集群将无法启动。 图片来源&#xff1a;Set up basic security for the Elastic Stack | Elas…

2018年认证杯SPSSPRO杯数学建模D题(第二阶段)投篮的最佳出手点全过程文档及程序

2018年认证杯SPSSPRO杯数学建模 D题 投篮的最佳出手点 原题再现&#xff1a; 影响投篮命中率的因素不仅仅有出手角度、球感、出手速度&#xff0c;还有出手点的选择。规范的投篮动作包含两膝微屈、重心落在两脚掌上、下肢蹬地发力、身体随之向前上方伸展、同时抬肘向投篮方向…

vue2使用mapbox

1.安装mapbox 这里安装的是"mapbox-gl": "^3.0.1", npm install --save mapbox-gl 安装mapbox 2.安装worker-loader npm install worker-loader --save-dev 安装worker-loader 配置vue.config.js const { defineConfig } require(vue/cli-servic…

MFC 序列化机制

目录 文件操作相关类 序列化机制相关类 序列化机制使用 序列化机制执行过程 序列化类对象 文件操作相关类 CFile&#xff1a;文件操作类&#xff0c;封装了关于文件读写等操作&#xff0c;常见的方法&#xff1a; CFile::Open&#xff1a;打开或者创建文件CFile::Write/…

AI图片物体移除器:高效、便捷的AI照片物体擦除工具

在我们的日常生活中&#xff0c;照片是一种重要的记录和表达方式。然而&#xff0c;有时候我们会遇到需要将照片中的某些物体和元素去除的情况。这时候&#xff0c;传统的图像处理软件可能过于复杂&#xff0c;让人望而却步。为了解决这个问题&#xff0c;AI图片物体移除器的软…

目标检测--02(Two Stage目标检测算法1)

Two Stage目标检测算法 R-CNN R-CNN有哪些创新点&#xff1f; 使用CNN&#xff08;ConvNet&#xff09;对 region proposals 计算 feature vectors。从经验驱动特征&#xff08;SIFT、HOG&#xff09;到数据驱动特征&#xff08;CNN feature map&#xff09;&#xff0c;提高特…