Aho-Corasick算法简称AC算法,也称为AC自动机(Aho-Corasick)算法,1975年产生于贝尔实验室(The Bell Labs),是一种用于解决多模式字符串匹配的经典算法之一。
the Bell Lab
本文的运行效果:
AC算法以模式树(字典树)Trie、广度优先策略和KMP模式匹配算法为核心内容。
using System;
using System.Collections;
using System.Collections.Generic;
namespace Legalsoft.Truffer.Algorithm
{
/// <summary>
/// Aho_Corasick 算法
/// </summary>
public static partial class PatternSearch
{
private static int MAXS = 512;
private static int MAXC = 26;
private static int[] outt = new int[MAXS];
private static int[] f = new int[MAXS];
private static int[,] g = new int[MAXS, MAXC];
private static int buildMatchingMachine(string[] arr, int k)
{
for (int i = 0; i < outt.Length; i++)
{
outt[i] = 0;
}
for (int i = 0; i < MAXS; i++)
{
for (int j = 0; j < MAXC; j++)
{
g[i, j] = -1;
}
}
int states = 1;
for (int i = 0; i < k; ++i)
{
string word = arr[i];
int currentState = 0;
for (int j = 0; j < word.Length; ++j)
{
int ch = word[j] - 'A';
if (g[currentState, ch] == -1)
{
g[currentState, ch] = states++;
}
currentState = g[currentState, ch];
}
outt[currentState] |= (1 << i);
}
for (int ch = 0; ch < MAXC; ++ch)
{
if (g[0, ch] == -1)
{
g[0, ch] = 0;
}
}
for (int i = 0; i < MAXC; i++)
{
f[i] = 0;
}
Queue<int> q = new Queue<int>();
for (int ch = 0; ch < MAXC; ++ch)
{
if (g[0, ch] != 0)
{
f[g[0, ch]] = 0;
q.Enqueue(g[0, ch]);
}
}
while (q.Count != 0)
{
int state = q.Peek();
q.Dequeue();
for (int ch = 0; ch < MAXC; ++ch)
{
if (g[state, ch] != -1)
{
int failure = f[state];
while (g[failure, ch] == -1)
{
failure = f[failure];
}
failure = g[failure, ch];
f[g[state, ch]] = failure;
outt[g[state, ch]] |= outt[failure];
q.Enqueue(g[state, ch]);
}
}
}
return states;
}
private static int findNextState(int currentState, char nextInput)
{
int answer = currentState;
int ch = nextInput - 'A';
while (g[answer, ch] == -1)
{
answer = f[answer];
}
return g[answer, ch];
}
public static List<int> Aho_Corasick_Search(string text, string pattern, int k = 1)
{
List<int> matchs = new List<int>();
string[] arr = new string[1] { pattern };
buildMatchingMachine(arr, k);
int currentState = 0;
for (int i = 0; i < text.Length; ++i)
{
currentState = findNextState(currentState, text[i]);
if (outt[currentState] == 0)
{
continue;
}
for (int j = 0; j < k; ++j)
{
if ((outt[currentState] & (1 << j)) > 0)
{
matchs.Add((i - arr[j].Length + 1));
}
}
}
return matchs;
}
}
}
POWER BY TRUFFER.CN
using System;
using System.Collections;
using System.Collections.Generic;
namespace Legalsoft.Truffer.Algorithm
{
/// <summary>
/// Aho_Corasick 算法
/// </summary>
public static partial class PatternSearch
{
private static int MAXS = 512;
private static int MAXC = 26;
private static int[] outt = new int[MAXS];
private static int[] f = new int[MAXS];
private static int[,] g = new int[MAXS, MAXC];
private static int buildMatchingMachine(string[] arr, int k)
{
for (int i = 0; i < outt.Length; i++)
{
outt[i] = 0;
}
for (int i = 0; i < MAXS; i++)
{
for (int j = 0; j < MAXC; j++)
{
g[i, j] = -1;
}
}
int states = 1;
for (int i = 0; i < k; ++i)
{
string word = arr[i];
int currentState = 0;
for (int j = 0; j < word.Length; ++j)
{
int ch = word[j] - 'A';
if (g[currentState, ch] == -1)
{
g[currentState, ch] = states++;
}
currentState = g[currentState, ch];
}
outt[currentState] |= (1 << i);
}
for (int ch = 0; ch < MAXC; ++ch)
{
if (g[0, ch] == -1)
{
g[0, ch] = 0;
}
}
for (int i = 0; i < MAXC; i++)
{
f[i] = 0;
}
Queue<int> q = new Queue<int>();
for (int ch = 0; ch < MAXC; ++ch)
{
if (g[0, ch] != 0)
{
f[g[0, ch]] = 0;
q.Enqueue(g[0, ch]);
}
}
while (q.Count != 0)
{
int state = q.Peek();
q.Dequeue();
for (int ch = 0; ch < MAXC; ++ch)
{
if (g[state, ch] != -1)
{
int failure = f[state];
while (g[failure, ch] == -1)
{
failure = f[failure];
}
failure = g[failure, ch];
f[g[state, ch]] = failure;
outt[g[state, ch]] |= outt[failure];
q.Enqueue(g[state, ch]);
}
}
}
return states;
}
private static int findNextState(int currentState, char nextInput)
{
int answer = currentState;
int ch = nextInput - 'A';
while (g[answer, ch] == -1)
{
answer = f[answer];
}
return g[answer, ch];
}
public static List<int> Aho_Corasick_Search(string text, string pattern, int k = 1)
{
List<int> matchs = new List<int>();
string[] arr = new string[1] { pattern };
buildMatchingMachine(arr, k);
int currentState = 0;
for (int i = 0; i < text.Length; ++i)
{
currentState = findNextState(currentState, text[i]);
if (outt[currentState] == 0)
{
continue;
}
for (int j = 0; j < k; ++j)
{
if ((outt[currentState] & (1 << j)) > 0)
{
matchs.Add((i - arr[j].Length + 1));
}
}
}
return matchs;
}
}
}