2022-ECCV-Explaining Deepfake Detection by Analysing Image Matching

news2024/11/17 23:33:16

一、研究背景
1.大量工作将深度伪造检测作为一个二分类任务并取得了良好的性能。
2.理解模型如何在二分类标签的监督下学习伪造相关特征仍难是个艰巨的任务。
3.视觉概念:具有语义的人脸区域,如嘴、鼻子、眼睛。

二、研究目标
1.验证假设,并从图像匹配的角度评估视觉概念的关系,以此解释检测模型的预测结果。
2.解释深度伪造检测模型如何在二分类标签的监督下学习伪影特征。
3.习得更好的检测模型,提高在压缩视频上的伪造检测性能。

三、研究动机(3种假设)
在这里插入图片描述
1.检测模型将既不与原图相关也不与目标图相关的视觉概念看作是与伪造相关的视觉概念,性能良好的检测模型应该基于源/目标-无关的视觉概念来判断真伪。
2.在标签的监督下,伪造-原图-目标图匹配可以帮助丢弃伪造无关视觉特征,隐式学习伪造相关的视觉概念。
3.利用原始训练集进行图片匹配习得的视觉概念容易受到视频压缩的影响。

四、技术路线
假设1:

  1. 设计源编码器 v s v_s vs和目标编码器 v t v_t vt区分图片中的视觉概念。
  2. 令伪造图片与相应源/目标图片具有相同属性标签,以此训练编码器。
  3. 用Shapley value评估视觉概念的区域贡献。例如:
    对输入图片做 L × L L\times L L×L区域划分,得到 G = { g 11 , … , g L L } G=\{g_{11},\dots,g_{LL}\} G={g11,,gLL}
    ϕ v d ( g i j ∣ G ) > 0 \phi_{v_{d}}(g_{ij}\mid G)>0 ϕvd(gijG)>0时,证明区域 g i j g_{ij} gij与伪造相关。
  4. 评估视觉概念间的关系:
    利用掩膜操作定位源/目标相关区域:
    M τ = I ( m a x ( ϕ v s , ϕ v s ) ) > τ M_{\tau}=I(max(\phi_{v{s}},\phi_{v{s}}))>\tau Mτ=I(max(ϕvs,ϕvs))>τ
    评估视觉概念间的交叉强度,第一项为无关区域的相关强度,第二项为相关区域的相关强度:
    在这里插入图片描述

假设2:
设置两种训练集:
第一种:真实图片仅包含和伪造图片相关的原图/目标图
第二种:真实图片与伪造图片不相关

假设3:
评估稳定性:
对于压缩图片,由源/目标编码器习得的视觉概念更加稳定。
在这里插入图片描述

FST-Matching Deepfake Detection Model:
直接将源/目标无关特征从源/目标视觉概念中分离出来去进行真伪检测可以提升在压缩视频上的性能。
在这里插入图片描述

  1. 习得源特征 f s f_s fs和目标特征 f t f_t ft
  2. 利用通道注意力自动解纠缠源/目标无关特征 f s i r f_s^{ir} fsir f t i r f_t^{ir} ftir和源/目标相关特征 f s r f_s^{r} fsr f t r f_t^{r} ftr
    在这里插入图片描述
  3. 设置 Fake-Source/Target Pair Verification module验证解纠缠的有效性,令源/目标图片的 f r f^{r} fr具有和原始图片相同的属性标签,并进行属性预测
    在这里插入图片描述
  4. 增强 [ f s i r , f t i r ] [f_s^{ir}, f_t^{ir}] [fsir,ftir]的交互, h h h为预测模块,令联合预测损失小,单一预测损失大,0输入的影响小。
    在这里插入图片描述
  5. 总损失
    在这里插入图片描述

五、实验结果
在这里插入图片描述
六、思考

  1. 解纠缠:伪造无关特征包含身份属性,伪造相关特征联合区分真假
  2. 图匹配:在匹配中去除相同属性的干扰
  3. 输入:上下支路均有源、目标、伪造图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1376243.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

centos8部署MySQL5.7故障集

转载说明:如果您喜欢这篇文章并打算转载它,请私信作者取得授权。感谢您喜爱本文,请文明转载,谢谢。 在centos8系统上安装MySQL,使用的是centos7上安装MySQL的脚本,出现了以下问题,以做记录&…

Spark原理——逻辑执行图

逻辑执行图 明确逻辑计划的边界 在 Action 调用之前,会生成一系列的RDD,这些RDD之间的关系,其实就是整个逻辑计划 val conf new SparkConf().setMaster("local[6]").setAppName("wordCount_source") val sc new SparkContext(conf)v…

多测师肖sir___ui自动化测试po框架讲解版

po框架 一、ui自动化po框架介绍 (1)PO是Page Object的缩写 (2)业务流程与页面元素操作分离的模式,可以简单理解为每个页面下面都有一个配置class, 配置class就用来维护页面元素或操作方法 (3&am…

20240111在ubuntu20.04.6下解压缩RAR格式的压缩包

20240111在ubuntu20.04.6下解压缩RAR格式的压缩包 2024/1/11 18:25 百度搜搜:ubuntu rar文件怎么解压 rootrootrootroot-X99-Turbo:~/temp$ ll total 2916 drwx------ 3 rootroot rootroot 4096 1月 11 18:28 ./ drwxr-xr-x 25 rootroot rootroot 4096 1月…

【时事篇-02】20240110 365天存钱法(sum法)

背景需求 朋友圈里,一位保险推销员发布“存钱法广告”,我想用Python验算结果正确性 使用的是最近宫格数独里用到的”sum法” 代码展示 项目:存钱游戏计算 sum() 作者:阿夏 时间:2024年1月10日19:03 import random1、钻石版:从1元存到365元&a…

七星彩中奖号码模拟机器

七星彩号码抽取规则。 前区:抽取前区6个号码,每个号码是0~9之间选1个。 后区:抽取后区1个号码,每个号码是0~14之间选1个。 #七星彩模拟器,2024-01-12,by qs import random QianQu_6number [0,1,2,3,4,5,…

【C语言】linux内核set_task_stack_end_magic函数

一、函数定义 void set_task_stack_end_magic(struct task_struct *tsk) {unsigned long *stackend;stackend end_of_stack(tsk);*stackend STACK_END_MAGIC; /* for overflow detection */ } 内核版本6.4.3、6.7。 二、代码解读 解读1 这段代码是一个在Linux内核中定…

奇异值分解在图形压缩中的应用

奇异值分解在图形压缩中的应用 在研究奇异值分解的工程应用之前,我们得明白什么是奇异值?什么是奇异向量? 奇异值与奇异向量 概念:奇异值描述了矩阵在一组特定向量上的行为,奇异向量描述了其最大的作用方向。 奇异值…

Flash教程(一)入门

从本篇开始,我们将开始基于python的web开发系列教程,这里使用轻量级的web框架Flask。 1、简介 Flask是一个用来构建基于python语言的web应用程序的轻量级web框架。Flask的作者是来自Pocoo(由一群热爱python的人组建)的Armin Ronacher。本来只是作者的一…

Numpy使用简介

Numpy 相关题目 【Python】—— Numpy 初体验 【Python】—— NumPy基础及取值操作 Numpy是基于Python的通用数值计算工具包,其内包含大量数学计算函数和矩阵运算函数。多数科学计算工具包,比如Scipy,和数值分析工具包,比如Pandas…

大学物理-实验篇(二)——用分光计测定三棱镜的折射率(光:特定频段电磁波、光线在介质界面折射、平行光与凸透镜)

目录 预备知识 光:特定频段电磁波 光线在介质界面折射 平行光与凸透镜 实验目的 实验仪器 实验原理 实验步骤 准备分光计 目镜调焦 刻度盘读数 测三棱镜顶角 测三棱镜最小偏向角 数据处理 预备知识 光:特定频段电磁波 光速:…

YOLOv8涨点改进:多层次特征融合(SDI),小目标涨点明显,| UNet v2,比UNet显存占用更少、参数更少

💡💡💡本文独家改进:多层次特征融合(SDI),能够显著提升不同尺度和小目标的识别率 如何引入到YOLOv8 1)替代原始的Concat; 💡💡💡Yolov8魔术师,独家首发创新(原创),适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你…

H 指数,经典算法实战。

🏆作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。 🏆多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。 🎉欢迎 👍点赞✍评论…

Mac上使用phpstudy+vscode配置PHP开发环境

使用的工具: 1、系统版本 2、vs code code 3、phpstudy_pro 一、下载vs code code以及必要的插件 1、vs code下载 点击vs code官网下载 选择对应的版本,一般电脑会自动识别对应的版本,点击下载,然后傻瓜式安装! 2…

陶瓷碗口缺口检测-技术方案

项目背景 陶瓷碗出厂前需要做的质量检测工作包括对陶瓷碗是否有缺口的检测,利用图像处理技术也可以对陶瓷碗的缺口进行检测和定位。 技术方案 陶瓷碗口缺口检测包含如下五个步骤。首先通过CMOS相机获取陶瓷碗的图像,二值化处理后通过图像复原技术进行去…

1886_emacs_v29中的行号配置

Grey 全部学习内容汇总: GitHub - GreyZhang/editors_skills: Summary for some common editor skills I used. emacs 29中的行号显示配置 行号显示 行号显示是一个编辑器中很常见的功能,我觉得这个功能的需求度可能因人群或者个人习惯而不同。对于只…

果然程序员的世界不是 0 就是 1

在一场轰动全球的爱情故事中,OpenAI 的首席执行官、同时也是打破常规的浪漫英雄,奥特曼,与他的基友奥利弗穆尔赫林在夏威夷举行了一场迷人的婚礼。在奥特曼的岛屿别墅附近,这对低调却又令人羡慕的新人,在奥特曼的哥哥杰…

python 爬虫 生成markdown文档

本文介绍的案例为使用python爬取网页内容并生成markdown文档,首先需要确定你所需要爬取的框架结构,根据网页写出对应的爬取代码 1.分析总网页的结构 我选用的是redis.net.com/order/xxx.html (如:Redis Setnx 命令_只有在 key 不存在时设置 key 的值。…

win系统搭建Minecraft世界服务器,MC开服教程,小白开服教程

Windows系统搭建我的世界世界服务器,Minecraft开服教程,小白开服教程,MC 1.19.4版本服务器搭建教程。 此教程使用 Mohist 1.19.4 服务端,此服务端支持Forge模组和Bukkit/Spigot/Paper插件,如果需要开其他服务端也可参…

uniapp微信小程序投票系统实战 (SpringBoot2+vue3.2+element plus ) -投票帖子详情实现

锋哥原创的uniapp微信小程序投票系统实战: uniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )_哔哩哔哩_bilibiliuniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )共计21条视频…