奇异值分解在图形压缩中的应用

news2024/11/17 23:28:32

奇异值分解在图形压缩中的应用


在研究奇异值分解的工程应用之前,我们得明白什么是奇异值?什么是奇异向量?

奇异值与奇异向量

概念:奇异值描述了矩阵在一组特定向量上的行为,奇异向量描述了其最大的作用方向。

奇异值分解(SVD)

矩阵A的分解涉及一个 m × n m \times n m×n的矩阵 Σ \Sigma Σ,其中 Σ \Sigma Σ= [ D 0 0 0 ] \begin{bmatrix} D &0\\0&0\end{bmatrix} [D000],D是一个 r × r r\times r r×r的方阵 ( r ≤ m , r ≤ n ) ( r \leq m , r\leq n) (rm,rn)

定理:设A是秩为 r r r m × n m\times n m×n的矩阵,那么存在一个类似于 Σ \Sigma Σ的矩阵,其中 D D D的对角线元素是 A A A的前 r r r个奇异值, σ 1 ≥ σ 2 ≥ σ 3 ≥ . . . ≥ σ r > 0 \sigma_1 \geq\sigma_2 \geq\sigma_3 \geq... \geq\sigma_r>0 σ1σ2σ3...σr>0并且存在一个 m × m m\times m m×m的正交矩阵 U U U 和一个 n × n n\times n n×n的正交矩阵 V T V^T VT使得 A = U Σ V T A=U\Sigma V^T A=UΣVT

奇异值分解计算过程

我们先假设一个矩阵 A = [ 2 3   0 2 ] A = \begin{bmatrix} 2 & 3 \\ \ 0 & 2\end{bmatrix} A=[2 032]
U = [ u 1 u 2 u 3 . . . ] U=[u_1 u_2 u_3 ...] U=[u1u2u3...] , ∑ = d i a g [ σ 1 σ 2 σ 3 . . . ] \sum = diag[\sigma_1 \sigma_2 \sigma_3 ...] =diag[σ1σ2σ3...] , V = [ v 1 v 2 v 3 . . . ] T V=\begin{bmatrix} v_1 \\ v_2\\ v_3 \\ ...\end{bmatrix}^T V= v1v2v3... T
其中 U U U代表A的正交矩阵; ∑ \sum 代表A的由奇异值组成的左奇异向量矩阵; V V V代表A的右奇异向量矩阵。

求A的 U , ∑ , V U , \sum , V U,,V.

  1. 计算 A T A A^TA ATA
    A T A = [ 2 0 3 2 ] [ 2 3 0 2 ] = [ 13 6 6 4 ] A^TA =\begin{bmatrix} 2&0\\3&2 \end{bmatrix} \begin{bmatrix} 2&3\\0&2\end{bmatrix}= \begin{bmatrix} 13&6\\6&4 \end{bmatrix} ATA=[2302][2032]=[13664]
  2. 计算 A T A A^TA ATA的奇异值 σ \sigma σ
    σ 1 2 σ 2 2 = d e t A T A = 16 σ 1 2 + σ 2 2 = t r A T A = 17 ∴ σ 1 2 = 16 , σ 2 2 = 1 ∴ σ 1 = 4 , σ 2 = 1 ∴ Σ = [ 4 0 0 1 ] \sigma_1^2\sigma_2^2 = det A^TA = 16 \\ \sigma_1^2 + \sigma_2^2 = tr A^TA = 17 \\ \therefore \sigma_1^2 =16, \sigma_2^2= 1\\ \therefore \sigma_1 =4, \sigma_2= 1\\ \therefore \Sigma=\begin{bmatrix} 4&0\\0&1 \end{bmatrix} σ12σ22=detATA=16σ12+σ22=trATA=17σ12=16,σ22=1σ1=4,σ2=1Σ=[4001]
  3. σ 1 , σ 2 \sigma_1,\sigma_2 σ1,σ2带入 A T A A^TA ATA中求其特征向量
    v 1 = [ 1 5 2 5 ] , v 2 = [ − 2 5 1 5 ] ∴ V = [ 1 5 − 2 5 2 5 1 5 ] \\ v_1= \begin{bmatrix} \frac{1}{\sqrt5} \\\\ \frac{2}{\sqrt5} \end{bmatrix} , v_2= \begin{bmatrix} -\frac{2}{\sqrt5}\\\\\frac{1}{\sqrt5} \end{bmatrix} \\\therefore V= \begin{bmatrix} \frac{1}{\sqrt5}&-\frac{2}{\sqrt5} \\\\ \frac{2}{\sqrt5}&\frac{1}{\sqrt5}\end{bmatrix} v1= 5 15 2 ,v2= 5 25 1 V= 5 15 25 25 1
  4. 构造标准正交向量
    u i = 1 σ i A v i ∴ u 1 = 1 σ 1 A v 1 = 1 4 [ 2 3 0 2 ] [ 1 5 2 5 ] = [ 2 5 1 5 ] ∴ u 2 = 1 σ 2 A v 2 = 1 1 [ 2 3 0 2 ] [ − 2 5 1 5 ] = [ − 1 5 2 5 ] ∴ U = ( u 1 , u 2 ) = [ 2 5 − 1 5 1 5 2 5 ] u_i=\frac{1}{\sigma_i}Av_i \\ \therefore u_1=\frac{1}{\sigma_1}Av_1=\frac{1}{4}\begin{bmatrix} 2&3\\\\0&2\end {bmatrix} \begin{bmatrix} \frac{1}{\sqrt5} \\\\ \frac{2}{\sqrt5} \end{bmatrix} =\begin{bmatrix} \frac{2}{\sqrt5}\\ \\ \frac{1}{\sqrt5} \end {bmatrix} \\ \therefore u_2=\frac{1}{\sigma_2}Av_2=\frac{1}{1}\begin{bmatrix} 2&3\\\\0&2\end {bmatrix} \begin{bmatrix} - \frac{2}{\sqrt5} \\\\ \frac{1}{\sqrt5} \end{bmatrix} =\begin{bmatrix} -\frac{1}{\sqrt5}\\ \\ \frac{2}{\sqrt5} \end {bmatrix} \\ \therefore U=(u_1,u_2)=\begin{bmatrix} \frac{2}{\sqrt5} & -\frac{1}{\sqrt5} \\ \\ \frac{1}{\sqrt5} &\frac{2}{\sqrt5} \end{bmatrix} ui=σi1Aviu1=σ11Av1=41 2032 5 15 2 = 5 25 1 u2=σ21Av2=11 2032 5 25 1 = 5 15 2 U=(u1,u2)= 5 25 15 15 2
  5. 写出表达式
    A = U Σ V T = [ 2 5 − 1 5 1 5 2 5 ] [ 4 0   0 1 ] [ 1 5 2 5 − 2 5 1 5 ] A=U\Sigma V^T=\begin{bmatrix} \frac{2}{\sqrt5} & -\frac{1}{\sqrt5} \\ \\ \frac{1}{\sqrt5} &\frac{2}{\sqrt5} \end{bmatrix} \begin{bmatrix} 4 & 0 \\\\ \ 0 & 1\end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt5}& \frac{2}{\sqrt5}\\\\ -\frac{2}{\sqrt5}&\frac{1}{\sqrt5}\end{bmatrix} A=UΣVT= 5 25 15 15 2 4 001 5 15 25 25 1

利用奇异值分解(SVD)进行图片压缩

首先我们先找一张图片来进行实验。
请添加图片描述

通道分离

对于JPG格式的彩色图片,拥有3个颜色通道,R(红)、G(绿)、B(蓝),那么可以尝试将每个颜色通道进行分离,产生3个形状均为图像高 x 宽 的单通道剧展,即imageR,imageG,imageB。

进行通道分离,将imageArray数组中的每个通道分别单独取出来,得到3个高 × \times × 宽的二维数组。这3个二维数组中每个位置上的取值就是对应像素的某个颜色通道的取值,代码如下:

import numpy as np
from PIL import Image
 
originalImage = Image.open(r'teriri.jpg', 'r')
imageArray = np.array(originalImage)
R = imageArray[:, :, 0]
G = imageArray[:, :, 1]
B = imageArray[:, :, 2]
print(R)
print(G)
print(B)

运行结果如下:

[[207 207 207 … 141 141 141]
[207 207 207 … 141 141 141]
[207 207 207 … 141 141 141]

[246 247 248 … 239 239 239]
[246 247 248 … 239 239 239]
[246 247 248 … 239 239 239]]
[[198 198 198 … 126 126 126]
[198 198 198 … 126 126 126]
[198 198 198 … 126 126 126]

[233 234 235 … 235 235 235]
[233 234 235 … 235 235 235]
[233 234 235 … 235 235 235]]
[[215 215 215 … 149 147 147]
[215 215 215 … 149 147 147]
[215 215 215 … 149 147 147]

[230 231 233 … 203 203 203]
[230 231 233 … 203 203 203]
[230 231 233 … 203 203 203]]

至此,我们成功得到了3个二维ndarray数组,将R、G、B三个通道成功进行了分离。

矩阵压缩

对每个单通道矩阵进行奇异值分解,按照压缩的实际需要取前k个奇异值,进行3个单通道的矩阵的压缩,最后分别形成3个压缩后的矩阵:imageRC,imageGC,imageBC,代码如下:

def imgCompress(channel,percent):
    U,sigma,V_T = np.linalg.svd(channel)
    m = U.shape[0]
    n = V_T.shape[0]
    reChannel = np.zeros((m,n))
    for k in range (len(sigma)):
        reChannel = reChannel + sigma[k] * np.dot(U[:,k].reshape(m,1),V_T[k,:].reshape(1,n))
        if float(k) / len(sigma) > percent:
            reChannel[reChannel < 0] = 0
            reChannel[reChannel > 255] = 255
            break
        return np.rint(reChannel).astype("unit8")

图像重建

将经过奇异值分解处理的3个单通道矩阵合并,从而重构出压缩后的彩色图像。

    for p in [0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 
              0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]:
    #p表示取所有奇异值的前多少比例
        reR = imgCompress(R,p)
        reG = imgCompress(G,p)
        reB = imgCompress(B,p)
        reI = np.stack((reR,reG,reB),2)
        Image.fromarray(reI).save("{}".format(p)+"img.png")

整体运行结果如下:

比例为0.001至0.04
在这里插入图片描述>0.05至0.5
在这里插入图片描述
0.6至原图
在这里插入图片描述
总结:

  1. 取前0.1%奇异值重建的图像是一个非常模糊的,基本只能看到大体轮廓。
  2. 取前1%奇异值重建的图像就可以看到一个比较清晰的图片了。
  3. 随着比例的提升,图片越来越清晰,到30%的时候就基本与原图一致了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1376231.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Flash教程(一)入门

从本篇开始&#xff0c;我们将开始基于python的web开发系列教程&#xff0c;这里使用轻量级的web框架Flask。 1、简介 Flask是一个用来构建基于python语言的web应用程序的轻量级web框架。Flask的作者是来自Pocoo(由一群热爱python的人组建)的Armin Ronacher。本来只是作者的一…

Numpy使用简介

Numpy 相关题目 【Python】—— Numpy 初体验 【Python】—— NumPy基础及取值操作 Numpy是基于Python的通用数值计算工具包&#xff0c;其内包含大量数学计算函数和矩阵运算函数。多数科学计算工具包&#xff0c;比如Scipy&#xff0c;和数值分析工具包&#xff0c;比如Pandas…

大学物理-实验篇(二)——用分光计测定三棱镜的折射率(光:特定频段电磁波、光线在介质界面折射、平行光与凸透镜)

目录 预备知识 光&#xff1a;特定频段电磁波 光线在介质界面折射 平行光与凸透镜 实验目的 实验仪器 实验原理 实验步骤 准备分光计 目镜调焦 刻度盘读数 测三棱镜顶角 测三棱镜最小偏向角 数据处理 预备知识 光&#xff1a;特定频段电磁波 光速&#xff1a;…

YOLOv8涨点改进:多层次特征融合(SDI),小目标涨点明显,| UNet v2,比UNet显存占用更少、参数更少

💡💡💡本文独家改进:多层次特征融合(SDI),能够显著提升不同尺度和小目标的识别率 如何引入到YOLOv8 1)替代原始的Concat; 💡💡💡Yolov8魔术师,独家首发创新(原创),适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你…

H 指数,经典算法实战。

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…

Mac上使用phpstudy+vscode配置PHP开发环境

使用的工具&#xff1a; 1、系统版本 2、vs code code 3、phpstudy_pro 一、下载vs code code以及必要的插件 1、vs code下载 点击vs code官网下载 选择对应的版本&#xff0c;一般电脑会自动识别对应的版本&#xff0c;点击下载&#xff0c;然后傻瓜式安装&#xff01; 2…

陶瓷碗口缺口检测-技术方案

项目背景 陶瓷碗出厂前需要做的质量检测工作包括对陶瓷碗是否有缺口的检测&#xff0c;利用图像处理技术也可以对陶瓷碗的缺口进行检测和定位。 技术方案 陶瓷碗口缺口检测包含如下五个步骤。首先通过CMOS相机获取陶瓷碗的图像&#xff0c;二值化处理后通过图像复原技术进行去…

1886_emacs_v29中的行号配置

Grey 全部学习内容汇总&#xff1a; GitHub - GreyZhang/editors_skills: Summary for some common editor skills I used. emacs 29中的行号显示配置 行号显示 行号显示是一个编辑器中很常见的功能&#xff0c;我觉得这个功能的需求度可能因人群或者个人习惯而不同。对于只…

果然程序员的世界不是 0 就是 1

在一场轰动全球的爱情故事中&#xff0c;OpenAI 的首席执行官、同时也是打破常规的浪漫英雄&#xff0c;奥特曼&#xff0c;与他的基友奥利弗穆尔赫林在夏威夷举行了一场迷人的婚礼。在奥特曼的岛屿别墅附近&#xff0c;这对低调却又令人羡慕的新人&#xff0c;在奥特曼的哥哥杰…

python 爬虫 生成markdown文档

本文介绍的案例为使用python爬取网页内容并生成markdown文档&#xff0c;首先需要确定你所需要爬取的框架结构&#xff0c;根据网页写出对应的爬取代码 1.分析总网页的结构 我选用的是redis.net.com/order/xxx.html (如:Redis Setnx 命令_只有在 key 不存在时设置 key 的值。…

win系统搭建Minecraft世界服务器,MC开服教程,小白开服教程

Windows系统搭建我的世界世界服务器&#xff0c;Minecraft开服教程&#xff0c;小白开服教程&#xff0c;MC 1.19.4版本服务器搭建教程。 此教程使用 Mohist 1.19.4 服务端&#xff0c;此服务端支持Forge模组和Bukkit/Spigot/Paper插件&#xff0c;如果需要开其他服务端也可参…

uniapp微信小程序投票系统实战 (SpringBoot2+vue3.2+element plus ) -投票帖子详情实现

锋哥原创的uniapp微信小程序投票系统实战&#xff1a; uniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )_哔哩哔哩_bilibiliuniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )共计21条视频…

使用 Jamf Pro 和 Okta 工作流程实现自动化苹果设备管理

Jamf的销售工程师Vincent Bonnin与Okta的产品经理Emily Wendell一起介绍了JNUC 2021的操作方法会议。它们涵盖了Okta工作流程&#xff08;Okta Workflow&#xff09;&#xff0c;并在其中集成了Jamf Pro&#xff0c;构建了一些工作流程&#xff0c;并提供了几个用例。 Okta 工作…

【密码学】python密码学库pycryptodome

记录了一本几乎是10年前的书&#xff08;python绝技–用python成为顶级黑客&#xff09;中过时的内容 p20 UNIX口令破解机 里面提到了python标准库中自带的crypt库&#xff0c;经验证Python 3.12.1中并没有这个自带的库&#xff0c;密码学相关的库目前&#xff08;2024.1.12&a…

Unity中URP下实现能量罩(外发光)

文章目录 前言一、实现菲涅尔效果1、求 N ⃗ \vec{N} N 2、求 V ⃗ \vec{V} V 3、得出菲涅尔效果4、得出菲涅尔相反效果5、增加菲涅尔颜色 二、能量罩 交接处高亮 和 外发光效果结合1、修改混合模式&#xff0c;使能量罩透明2、限制 0 ≤ H i g h L i g h t C o l o r ≤ 1 …

002 Golang-channel-practice

第二题&#xff1a; 创建一个生产器和接收器&#xff0c;再建立一个无缓冲的channel。生产器负责把数据放进管道里&#xff0c;接收器负责把管道里面的数据打印出来。这里我们开5个协程把数据打印出来。 直接上代码&#xff01; package mainimport ("fmt" )func …

常见的硬件设计相关网站和资料

以下是一些常见的硬件设计相关网站和资料&#xff1a; Arduino官方网站&#xff1a;https://www.arduino.cc/ - Arduino是一款流行的开源硬件平台&#xff0c;官方网站提供了大量的教程、项目示例和文档&#xff0c;适合初学者和专业人士。 2. TI&#xff08;德州仪器&#xf…

AI RAG应用的多种文档分块代码

在开发 RAG 应用程序时,重要的是要有一个完善的文档分块模式来攫取内容。虽然有很多库可以实现这一目标,但重要的是要了解这一过程的基本机制,因为它是 AI RAG 应用程序的基石。 欢迎关注公众号(NLP Research) 测试文档 在测试文档中,我们将使用亚马逊文档中的大型 PDF…

写一个简单的Java的Gui文本输入窗口,JFrame的简单使用

JFrame是指一个计算机语言-java的GUI程序的基本思路是以JFrame为基础,它是屏幕上window的对象,能够最大化、最小化、关闭。 Swing的三个基本构造块:标签、按钮和文本字段;但是需要个地方安放它们,并希望用户知道如何处理它们。JFrame 类就是解决这个问题的——它是一个容器…

Ubuntu 20.04 Intel RealSense D435i 相机标定教程

下载编译code_utils mkdir -p ~/imu_catkin_ws/src cd ~/imu_catkin_ws/src catkin_init_workspace source ~/imu_catkin_ws/devel/setup.bash git clone https://github.com/gaowenliang/code_utils.git cd .. catkin_make报错&#xff1a;sumpixel_test.cpp:2:10: fatal err…