搭建神经网络
model
import torch
from torch import nn
#搭建神经网络
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64 * 4 * 4, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
if __name__ == '__main__':
tudui = Tudui()
input = torch.ones((64, 3, 32, 32))
output = tudui(input)
print(output.size()) # torch.Size([64, 10])
train
import torchvision
from model import *
from torch.utils.data import DataLoader
#准备数据集
train_data = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=torchvision.transforms.ToTensor())
test_data = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=torchvision.transforms.ToTensor())
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size)) # 50000
print("测试数据集的长度为:{}".format(test_data_size)) # 10000
#利用Dataloader来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
#创建网络模型
tudui = Tudui()
#损失函数
loss_fn = nn.CrossEntropyLoss()
#优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)
#设置训练网络的一些参数
#记录训练的次数
total_train_step = 0
#记录测试的次数
total_test_step = 0
#训练的轮数
epochs = 10
for epoch in range(epochs):
print("------第{}轮训练开始------".format(epoch+1))
#训练步骤开始
for data in train_dataloader:
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
#优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step += 1
if total_train_step % 100 == 0:
print("训练次数: {}, Loss: {}".format(total_train_step, loss)) # loss.item()
#测试步骤开始
total_test_loss = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
total_test_loss += loss
print("整体测试集上的Loss: {}".format(total_test_loss))
确实每轮有所提升
添加tensorboard
writer = SummaryWriter(log_dir='./logs_train')
writer.add_scalar('train_loss', loss, total_train_step)
writer.add_scalar('test_loss', total_test_loss, total_test_step)
total_test_step += 1
writer.close()
test_loss train_loss
保存模型
torch.save(tudui, "tudui_{}.pth".format(epoch+1))
print('模型已保存')
整体代码
import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from model import *
from torch.utils.data import DataLoader
#准备数据集
train_data = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=torchvision.transforms.ToTensor())
test_data = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=torchvision.transforms.ToTensor())
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size)) # 50000
print("测试数据集的长度为:{}".format(test_data_size)) # 10000
#利用Dataloader来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
#创建网络模型
tudui = Tudui()
#损失函数
loss_fn = nn.CrossEntropyLoss()
#优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)
#设置训练网络的一些参数
#记录训练的次数
total_train_step = 0
#记录测试的次数
total_test_step = 0
#训练的轮数
epochs = 10
#添加tensorboard
writer = SummaryWriter(log_dir='./logs_train')
for epoch in range(epochs):
print("------第{}轮训练开始------".format(epoch+1))
#训练步骤开始
for data in train_dataloader:
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
#优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step += 1
if total_train_step % 100 == 0:
print("训练次数: {}, Loss: {}".format(total_train_step, loss)) # loss.item()
writer.add_scalar('train_loss', loss, total_train_step)
#测试步骤开始
total_test_loss = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
total_test_loss += loss
print("整体测试集上的Loss: {}".format(total_test_loss))
writer.add_scalar('test_loss', total_test_loss, total_test_step)
total_test_step += 1
torch.save(tudui, "tudui_{}.pth".format(epoch+1))
print('模型已保存')
writer.close()
预测
import torch
outputs = torch.tensor([[0.1, 0.2],
[0.3, 0.4]])
print(outputs.argmax(dim=1)) # 取最大值的位置;1横着看, 0竖着看
预测的正确率
import torch
outputs = torch.tensor([[0.1, 0.2],
[0.3, 0.4]])
print(outputs.argmax(dim=1)) # 取最大值的位置;1横着看, 0竖着看
preds = outputs.argmax(1)
targets = torch.tensor([0, 1])
print((preds == targets).sum()) # 对应位置相等的个数
对源代码的进行修改(增正确取率)
主要加了这一句,看分类的正确率
total_accuracy += (outputs.argmax(1) == targets).sum()
完整
import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from model import *
from torch.utils.data import DataLoader
#准备数据集
train_data = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=torchvision.transforms.ToTensor())
test_data = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=torchvision.transforms.ToTensor())
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size)) # 50000
print("测试数据集的长度为:{}".format(test_data_size)) # 10000
#利用Dataloader来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
#创建网络模型
tudui = Tudui()
#损失函数
loss_fn = nn.CrossEntropyLoss()
#优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)
#设置训练网络的一些参数
#记录训练的次数
total_train_step = 0
#记录测试的次数
total_test_step = 0
#训练的轮数
epochs = 10
#添加tensorboard
writer = SummaryWriter(log_dir='./logs_train')
for epoch in range(epochs):
print("------第{}轮训练开始------".format(epoch+1))
#训练步骤开始
for data in train_dataloader:
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
#优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step += 1
if total_train_step % 100 == 0:
print("训练次数: {}, Loss: {}".format(total_train_step, loss)) # loss.item()
writer.add_scalar('train_loss', loss, total_train_step)
#测试步骤开始
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
total_test_loss += loss
total_accuracy += (outputs.argmax(1) == targets).sum()
print("整体测试集上的Loss: {}".format(total_test_loss))
print("整体测试集上的正确率: {}".format(total_accuracy/test_data_size))
writer.add_scalar('test_loss', total_test_loss, total_test_step)
writer.add_scalar('test_accuracy', total_accuracy/test_data_size, total_test_step)
total_test_step += 1
torch.save(tudui, "tudui_{}.pth".format(epoch+1))
print('模型已保存')
writer.close()
正确率是有提升的
(三)细节
tudui.train()
tudui.eval()
并不是这样才能开始,仅对部分层有用,比如Dropout