人工智能复习

news2025/1/26 15:51:35

机器学习中线性回归和逻辑回归:

机器学习的分类:

监督学习和无监督学习,半监督学习

监督学习(Supervised Learning):

监督学习是一种利用带有标签(标记)的数据进行训练的机器学习方法。
在监督学习中,训练数据包含输入样本和对应的标签(预期输出)。
学习的目标是通过训练数据构建一个模型,该模型能够对新的未标记数据进行预测或分类。
监督学习的典型应用包括分类(如垃圾邮件识别)和回归(如房价预测)等。
无监督学习(Unsupervised Learning):

无监督学习是一种在没有标签(标记)的数据中发现模式和结构的机器学习方法。
在无监督学习中,训练数据只包含输入样本,没有相应的标签或预期输出。
学习的目标是从数据中推断出隐藏的结构、关系或规律。
无监督学习的典型应用包括聚类(将数据划分为类别)、降维(减少数据的维度)和关联规则挖掘等。

我们学到的例子是对花的分类,具体过程如下:

1,加载数据。我们用到了鸢尾花(Iris)数据集,这是机器学习和统计学中一个经典的数据集。该数据集包含 5 个属性下的 150 条记录 - 花瓣长度、花瓣宽度、萼片长度、萼片宽度和类别(物种)。
2,分析和可视化数据集。将 75% 的行数据及对应标签作为训练集,剩下 25% 的数据及其标签作为测试集。训练集与测试集的分配比例可以是随意的,但使用 25% 的数据作为测试集是很好的经验法则。(存在标签,是监督学习),重点(利用伪随机数生成器将数据集打乱。)。绘制训练集中特征的散点图矩阵。数据点的颜色与鸢尾花的品种相对应。
3,模型训练。
4,做出预测。
5,评估模型。这里需要用到之前创建的测试集。这些数据没有用于构建模型,但我们知道测试集中每朵鸢尾花的实际品种。因此,我们可以对测试数据中的每朵鸢尾花进行预测,并将预测结果与标签(已知的品种)进行对比。我们可以通过计算精度(accuracy)来衡量模型的优劣,精度就是品种预测正确的花所占的比例。

线性回归:处理数值问题,最后预测结果是数字,例如房价。

逻辑回归:属于分类问题,预测结果是离散分类,监督学习,在统计概率过程中是回归,最后判断决定概率值是分类。如上述的花的分类。

语义网络表示不多说,注意ISA和AKO的用处,分别是isa和a kind of。注意隐晦的表达,孙老师包含两个信息,孙老师(语义网络主题)ISA老师(属性)。

归结法证明,细节之一是量词辖域 :

证明B是A的逻辑结论,是要将B取反然后和A进行或运算,如果结果是永真,即证明完成。

以这个为例:

第一步是取消蕴含式符号,第二步是减少否定符号的辖域。实行变量标准化,用w来更新变量。然后消去存在量词,化为前束式。化为合取范式。消去全称量词和连接词。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1372820.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

用友U8流程审批效率-SQLServer+SSRS

文章目录 @[TOC]1、 需求及效果1.1 需求1.2 效果2、 思路及SQL语句3、实现折叠明细表4、结语1、 需求及效果 1.1 需求 想要查看U8的审批流程,查看流程在哪个节点或人停留的时间,这个单据整个流程走下来需要的时间。可以更加直观方便的查看审批效率 1.2 效果 采用了SSRS上…

【算法每日一练]-动态规划 (保姆级教程 篇15) #纸带 #围栏木桩 #四柱河内塔

目录 今日知识点: 计算最长子序列的方案个数,类似最短路径个数问题 四柱河内塔问题:dp[i]min{ (p[i-k]f[k])dp[i-k] } 纸带 围栏木桩 四柱河内塔 纸带 思路: 我们先设置dp[i]表示从i到n的方案数。 那么减法操作中&#xff…

TensorRt(5)动态尺寸输入的分割模型测试

文章目录 1、固定输入尺寸逻辑2、动态输入尺寸2.1、模型导出2.2、推理测试2.3、显存分配问题2.4、完整代码 这里主要说明使用TensorRT进行加载编译优化后的模型engine进行推理测试,与前面进行目标识别、目标分类的模型的网络输入是固定大小不同,导致输入…

Docker中镜像的相关操作

1.辅助操作 docker version:用查看docker客户端引擎和server端引擎版本信息。 docker info:用来查看docker引擎的详细信息。 docker --help:用来查看帮助信息。 2.镜像Image docker images:查看当前本地仓库中存在哪些镜像。 …

Mysql是怎样运行的--下

文章目录 Mysql是怎样运行的--下查询优化explainoptimizer_trace InnoDB的Buffer Pool(缓冲池)Buffer Pool的存储结构空闲页存储--free链表脏页(修改后的数据)存储--flush链表 使用Buffer PoolLRU链表的管理 事务ACID事务的状态事…

在CentOS环境下编译GreatSQL RPM包

本文介绍如何在CentOS环境下编译GreatSQL RPM包。 运行环境是docker中的CentOS 8 x86_64: $ docker -v Docker version 20.10.10, build b485636$ docker run -itd --hostname c8 --name c8 centos bash a0a2128591335ef41e6faf46b7e79953c097500e9f033733c3ab37f…

使用curl命令在Linux中进行HTTP请求

在Linux中,curl是一个非常强大的命令行工具,用于发送HTTP请求。它允许用户发送各种类型的HTTP请求,如GET、POST、PUT、DELETE等,并能够处理响应数据。 首先,确保您的Linux系统已经安装了curl。如果未安装,…

Android 13 移除下拉栏中的设置入口

介绍 因为当前项目的设置已被加密,客户不希望通过下拉窗口的设置图标进入设置,决定去掉该图标。 效果展示 分析 这里首先想到在SystemUI寻找这个图标的资源文件,找到资源文件后寻找对应控件调用的地方,根据id寻找控件代码即可。…

2024年Google Ads新手指南——广告运作与类型、工具

谷歌广告投放是出海企业的必备运营动作,但你需要先了解他的运作逻辑、广告类型、投放必备的工具类型,之后可以为你的投放的高速转化做好万全准备,毕竟每一分钱都要花在刀刃上!废话不多说,下面开始为新手准备了基础指南…

【LLM】vLLM部署与int8量化

Acceleration & Quantization vLLM vLLM是一个开源的大型语言模型(LLM)推理和服务库,它通过一个名为PagedAttention的新型注意力算法来解决传统LLM在生产环境中部署时所遇到的高内存消耗和计算成本的挑战。PagedAttention算法能有效管理…

重置 Docker 中 Gitlab 的账号密码

1、首先进入Docker容器 docker exec -it gitlab bash 2、连接到 gitlab 的数据库 需要谨慎操作 gitlab-rails console -e production 等待加载完后会进入控制台 ------------------------------------------------------------------------------------------------------…

Page 251~254 Win32 GUI项目

win32_gui 源代码&#xff1a; #if defined(UNICODE) && !defined(_UNICODE)#define _UNICODE #elif defined(_UNICODE) && !defined(UNICODE)#define UNICODE #endif#include <tchar.h> #include <windows.h>/* Declare Windows procedure */…

知名开发者社区Stack Overflow发布《2023 年开发者调查报告》

Stack Overflow成立于2008年&#xff0c;最知名的是它的公共问答平台&#xff0c;每月有超过 1 亿人访问该平台来提问、学习和分享技术知识。是世界上最受欢迎的开发者社区之一。每年都会发布一份关于开发者的调查报告&#xff0c;来了解不断变化的开发人员现状、正在兴起或衰落…

[机缘参悟-122] :IT人如何认识自己的?自省、面试、考核、咨询?

目录 一、为什么要认识自己 二、认识自己的哪些方面&#xff1f; 三、如何认识自己 3.1 通过自省认识自己 3.2 通过面试认识自己 3.3 通过咨询认识自己 3.4 通过相亲认识自己 3.5 通过一段感情关系认识自己 一、为什么要认识自己 认识自己在人类的成长和心灵发展过程中…

亚马逊实时 AI 编程助手 CodeWhisperer使用体验

文章目录 1&#xff1a;什么是CodeWhisperer &#xff1f;2&#xff1a;试用3&#xff1a;上手体验 1&#xff1a;什么是CodeWhisperer &#xff1f; 最近ChatGPT展现出强大AI能力给我们带来了深刻的影响&#xff0c;AI现在不是一个概念&#xff0c;基于AI的产品一定在各行各业…

Linux网络配置与抓包工具介绍

目录 一、配置命令 1. ifconfig 1.1 概述信息解析 1.2 常用格式 2. ip 2.1 ip link 数据链路层 2.2 ip addr 网络层 2.3 路由 3. hostname 3.1 临时修改主机名 3.2 永久修改主机名 4. route 5. netstat 6. ss 7. ping 8. traceroute 9. nslookup 10. 永久修…

vivado图形化设计篇

一.看懂波形 二.由波形可得真值表 三.可得逻辑表达式 YA(BC) 四. 逻辑框图 五.vivado图形化设计 &#xff08;1&#xff09;创建文件 1.create block desige 2.文件命名&#xff0c;设置文件放置地址 &#xff08;2&#xff09; 添加IP核 1.打开desige&#xff0c;右键&#…

UniRepLKNet实战:使用UniRepLKNet实现图像分类任务(一)

文章目录 摘要安装包安装timm 数据增强Cutout和MixupEMA项目结构计算mean和std生成数据集一些问题 摘要 大核卷积神经网络&#xff08;ConvNets&#xff09;近年来受到广泛关注&#xff0c;但仍存在两个关键问题需要进一步研究。首先&#xff0c;目前的大型卷积神经网络架构大…

如何在企业中实施自适应人工智能?

人工智能不再是企业的选择。很快&#xff0c;它也将不再是一个区分因素。商业中的适应性人工智能正在改变格局。根据最近的统计数据&#xff0c;95%的企业以上都在追求人工智能。 因此&#xff0c;为了确保你拥有竞争优势&#xff0c;你必须期待先进的人工智能选项。适应性就是…

CH341 SPI方式烧录BK7231U

CH341是一个USB总线的转接芯片&#xff0c;通过USB总线提供异步串口、打印口、并口以及常用的2线和4线等同步串行接口。 BK7231U Wi-Fi SOC芯片&#xff0c;内嵌处理器。1. 符合802.11b/g/n 1x1协议 2. 17dBm 输出功率3. 支持20/40 MHz带宽和STBC 4. 支持Wi-Fi STA、AP、…