神经网络-搭建小实战和Sequential的使用

news2024/11/19 9:28:02

CIFAR-10 model structure

在这里插入图片描述

通过已知参数(高、宽、dilation=1、kernel_size)推断stride和padding的大小

在这里插入图片描述

网络

import torch
from torch import nn

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2)
        self.maxpool1 = nn.MaxPool2d(kernel_size=2)
        self.conv2 = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2)
        self.maxpool2 = nn.MaxPool2d(2)
        self.conv3 = nn.Conv2d(32, 64, 5,padding=2)
        self.maxpool3 = nn.MaxPool2d(2)
        self.flatten = nn.Flatten()
        self.linear1 = nn.Linear(1024, 64)
        self.linear2 = nn.Linear(64, 10)
    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x
tudui = Tudui()
print(tudui)

在这里插入图片描述

对网络进行检验

input = torch.ones((64, 3, 32, 32))
output = tudui(input)
print(output.shape) # torch.Size([64, 10])

在这里插入图片描述

线性层如果不知道输入特征是多少,注释掉线性层,查看输入特征(这里是1024)

# x = self.linear1(x)
# x = self.linear2(x)

在这里插入图片描述

使用nn.Sequential

import torch
from torch import nn

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1 = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, padding=2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )
    def forward(self, x):
        x = self.model1(x)
        return x
tudui = Tudui()
print(tudui)
input = torch.ones((64, 3, 32, 32))
output = tudui(input)
print(output.shape) # torch.Size([64, 10])

在这里插入图片描述

可视化模型结构

writer = SummaryWriter('logs_seq')
writer.add_graph(tudui, input)  # 将模型的计算图添加到TensorBoard中, 这可以帮助你可视化整个模型的结构, 包括各个层之间的连接关系
writer.close()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1371341.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

GEE计算Landsat8的NDVI

目录 前言源代码结果 前言 NDVI(近红-红)/(近红红) normalizedDifference方法是(A-B)/(AB)的计算方法 计算NDVI一般用来配合其他反演参数,构造指数或者数据升降尺度。 …

ELK生命周期

ELKkafka <es生命周期可视化配置界面> 一、创建索引模式 根据logstash中的日志规则 匹配对应系统日志 二、创建索引生命周期策略&#xff1a;可以控制生成索引的生命周期 共4个阶段&#xff1a;热阶段——温阶段——冷阶段——删除阶段 阶段1. hot: 索引被频繁写入和查…

Maintaining Performance with Less Data(待补)

文章目录 AbstractIntroductionPrevious WorkIncreasing data useReducing data useVariable data useContribution MethodsDatasetsHardwarePerformance MetricsNetwork Architecture ExperimentationBenchmarkData stepobserve Data IncrementData Cut DiscussionConclusion …

竞赛保研 基于深度学习的动物识别 - 卷积神经网络 机器视觉 图像识别

文章目录 0 前言1 背景2 算法原理2.1 动物识别方法概况2.2 常用的网络模型2.2.1 B-CNN2.2.2 SSD 3 SSD动物目标检测流程4 实现效果5 部分相关代码5.1 数据预处理5.2 构建卷积神经网络5.3 tensorflow计算图可视化5.4 网络模型训练5.5 对猫狗图像进行2分类 6 最后 0 前言 &#…

java解析json复杂数据的第三种思路

文章目录 一、概述二、数据预览1. 接口json数据2. json转xml数据 三、代码实现1. pom.xml2. 核心代码3. 运行结果 四、源码传送 一、概述 接上篇 java解析json复杂数据的两种思路 我们已经通过解析返回json字符串得到数据,现在改变思路, 按照如下流程获取数据: #mermaid-svg-k…

如何使用 Helm 在 K8s 上集成 Prometheus 和 Grafana|Part 2

在 Part 1 中&#xff0c;我们一起了解了什么是 Prometheus 和 Grafana&#xff0c;以及使用这些工具的前提条件和优势。在本部分&#xff0c;将继续带您学习如何安装 Helm 以及如何使用 Prometheus Helm Charts。 开始使用 Helm 和 Helm Chart ArtifactHub 为 Helm Chart 提供…

cctalk录屏去水印翻录过检测教程

最近在上cctalk的网课时候&#xff0c;遇到了这种情况&#xff0c;无法打开录屏工具&#xff0c;打开了录屏软件会被播放器检测&#xff0c;无法正常播放网课视频&#xff0c;可以用这个工具&#xff0c;就可以随便录了&#xff0c;而且可以去用户名水印。 使用方法也很简单&a…

WPS Office找回丢失的工作文件

WPS office恢复办公文件方法有两种. 1.通过备份中心可以查看近期编辑 office 历史版本进行恢复. 2.缓存备份目录可以查看编辑过的 office 文件的历史版本&#xff0c;新版本 WPS 可以在配置工具-备份清理找到&#xff0c;2019 年旧版本 WPS 可以在新建任意 office 文件-文件-选…

北京大学漏洞报送证书

获取来源&#xff1a;edusrc&#xff08;教育漏洞报告平台&#xff09; url&#xff1a;教育漏洞报告平台(EDUSRC) 兑换价格&#xff1a;30金币 获取条件&#xff1a;北京大学任意中危或以上级别漏洞

为什么你的手机需要更大的内存

可以确定的是&#xff0c;手机已经先于电脑开启了AI计算时代&#xff0c;新发布的手机几乎都集成了AI处理器&#xff0c;那为什么你还需要更大的内存呢&#xff0c;下面我们来探讨下这个问题。 虽然目前新发布的手机并不都集成了AI处理器&#xff0c;但AI处理器已经成为了一种趋…

SpringMVC 的入门

SpringMVC 的入门 1环境搭建 1.1.创建工程 1.2.添加web支持 右键项目选择Add framework support... 2.添加web支持 ​ 3.效果 注意&#xff1a; 不要先添加打包方式将web目录要拖拽到main目录下&#xff0c;并改名为webapp 1.3.pom.xml <?xml version"1.0&q…

LabVIEW在旋转机械故障诊断中的随机共振增强应用

在现代工业自动化领域&#xff0c;准确的故障诊断对于保障机械设备的稳定运行至关重要。传统的故障检测方法往往因噪声干扰而难以捕捉到微弱的故障信号。随着LabVIEW在数据处理和系统集成方面的优势日益凸显&#xff0c;其在旋转机械故障诊断中的应用开始发挥重要作用&#xff…

钉钉审批流程解读

组织机构 部门 部门可以创建下级部门部门可以设置部门主管&#xff0c;可以是多人部门可以默认构建&#xff0c;沟通群可以设置部门信息&#xff0c;比如电话、简介可以设置部门的可见性&#xff0c;比如隐藏本部门&#xff0c;本部门将不会在组织机构、搜索&#xff0c;个人…

聚焦DDoS安全,分享防御DDoS攻击的几大有效方法

当下在混合云、多云环境中&#xff0c;不论任何人、任何部门以及组织都依赖互联网进行运作&#xff0c;分布式拒绝服务&#xff08;DDoS&#xff09;攻击是正在面临的最大威胁之一。当DDoS攻击汹涌而至&#xff0c;缺失详细的保护预案&#xff0c;企业很可能会陷入数小时或数天…

uniapp微信小程序投票系统实战 (SpringBoot2+vue3.2+element plus ) -创建图文投票实现

锋哥原创的uniapp微信小程序投票系统实战&#xff1a; uniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )_哔哩哔哩_bilibiliuniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )共计21条视频…

【海康威视】场景中遇到的那些问题

文章目录 问题一&#xff1a;DOM 遮挡问题描述解决 问题二&#xff1a;切换过快时&#xff0c;页面出现白块解决 前言&#xff1a;在使用 海康威视 插件进行做视频接入时&#xff0c;出现的一些奇奇怪怪的问题&#xff0c;今天整理一下吧&#xff01;&#xff01;&#xff01; …

Kubernetes-准入控制

一. 准入控制 Webhook 官方demo 默认准时控制器 NamespaceLifecycleLimitRangerServiceAccountTaintNodesByConditionPriorityDefaultTolerationSecondsDefaultStorageClassStorageObjectInUseProtectionPersistentVolumeClaimResizeRuntimeClassCertificateApprovalCertifica…

若依项目的table列表中对每一个字段增加排序按钮(单体版和前后端分离版)

一、目标&#xff1a;每一个字段都添加上下箭头用来排序 只需要更改前端代码&#xff0c;不需要更改后端代码&#xff0c;后面会讲解原理 二、单体版实现方式&#xff1a; 1.在options中添加sortable:true 2.在需要排序的字段中添加sortable:true 三、前后端分离版 1.el-tab…

RHCE9学习指南 第17章 进程管理

17.1 进程介绍 在Windows下打开任务管理器就可以查看到系统所有进程&#xff0c;如图17-1所示。 图17-1 Windows下的任务管理器 这里列出了系统中所有的进程。不过也可以使用命令行工具来查看进程。每个进程都会有一个process ID&#xff0c;简称为pid。 17.2 查看进程 也可…

使用numpy处理图片——镜像翻转和旋转

在《使用numpy处理图片——基础操作》一文中&#xff0c;我们介绍了如何使用numpy修改图片的透明度。本文我们将介绍镜像翻转和旋转。 镜像翻转 上下翻转 from PIL import Image import numpy as np img Image.open(example.png) data np.array(img)# axis0 is vertical, a…