安科瑞智慧型动态无功补偿的工业应用——安科瑞赵嘉敏

news2024/11/27 2:38:50

摘要:低压配电系统的无功补偿是电能质量治理的重要环节。在传统无功补偿中,响应速度较慢,补偿电流呈阶梯式,存在过补或欠补的现象,有时未必能到达理想的效果。为了解决这一问题,人们提出了一种无功补偿综合控制方法,通过采集电力系统中的电压、电流及功率,实时协调控制LC(电容电抗)和SVG(静止无功发生器)模块进行混合补偿,又称智慧型动态无功补偿,可以实现补偿电流的连续输出。将此方案应用于工程实际中,结果表明该方案可以有效地改善供电质量、提高系统功率因数

关键词:电能质量;无功补偿综合控制;LC;静止无功发生器;智慧型动态无功补偿

引言

随着现代社会经济和文化的不断发展,陶瓷生产行业的整体用电量激增,但同时也带来了一系列的电能质量问题,陶瓷生产企业的主要负荷有滚压成型机、球磨机等,例如球磨机采用变频驱动。由于原材料体积不规则,球磨机运行冲击电流较大,同时产生3、5、7次等谐波,导致传统无功补偿响应跟不上、电容器损坏较多、功率因数较低,影响了电力系统的稳定,

1无功补偿概述

在交流电力系统中,绝大多数负载都是感性负载,如变压器、电动机、压缩机、空调等,其等效电路可看作电阻R和电感L的串联电路,如下图4所示。

 图4-供电系统等效电路                                     图5-功率因数得到提高

 由图5的相量图可知,没有投入电容C时,电压U和电流I的相位角为φ1,投入电容C后,电压U和电流I的相位角为φ2,电压电流的相位角减小了,则系统的功率因数得到了提升。当容性负荷释放能量时,感性负荷吸收能量;而感性负荷释放能量时,容性负荷吸收能量,能量在两种负荷之间交换,如图6所示。这样,感性负荷所吸收的无功功率可从容性负荷输出的无功功率中得到补偿,不仅可以提高功率因数和系统电压,还能有效地减少系统电能损耗。

图6-容性负荷和感性负荷的能量交换

 从无功相位角度进行分析,纯阻性负载的电压和电流同相位,感性负载的电压超前电流,容性负载的电压滞后电流,如图7所示。

图7-无功的相位分析

 

2无功补偿的形式

2.1  LC无功补偿

LC无功补偿属于传统的电容补偿,工作时并联在电力系统中,根据电网中负载功率因数的变化,控制电力电容器投切进行无功补偿。其原理为:通过CT采集电压、电流信号,再由控制器计算出投切方案,控制投切开关(复合开关、晶闸管开关等)对各组电力电容器进行投切。如图8所示。

图8-LC无功补偿的工作原理

2.2  SVG无功补偿

SVG属于有源型无功补偿设备,它将三相桥式电路通过电抗器并联到电网,根据系统的无功功率,通过IGBT功率变换器输出满足要求的容性或感性基波电流,从而实现动态无功补偿,不会出现过补或欠补现象,且补偿平滑,不会产生对负载和电网的涌流冲击。其原理如图9所示。

 

图9-SVG无功补偿的工作原理

2.3  智慧型动态无功补偿

LC补偿在负荷变化较快或存在冲击负荷的场合无法做到快速响应,易出现过补或欠补,其次LC补偿装置中的并联电容器对谐波电流具有放大作用,容易引起系统谐振,但在成本上较为经济。SVG可对感性和容性无功进行连续快速补偿,避免过补和欠补的发生,且不会与系统或负载设备产生谐振,适用于负载快速变化的场合,但其成本也相对较高。

鉴于上述两种补偿方式的优缺点,人们通过研究设计出来一种用于无功补偿的新型电力电子装置——智慧型动态无功补偿装置。它采用了一种无功补偿综合控制方法,加入控制器来控制SVG模块和LC模块投切,用SVG模块的快速响应、准确补偿的特性来弥补LC模块响应速度慢、分级补偿的缺点,相对于全SVG补偿又降低了成本。其补偿原理如图10所示,检测补偿对象的电压和电流,经指令电流运算电路计算得出补偿电流的指令信号,该信号经补偿电流发生电路放大,得出补偿电流,然后通过控制器控制SVG模块先行投入补偿,随后投入LC模块,调节SVG模块输出电流以满足无功需求,使功率因数达到设定值。

 图10-智慧型动态无功补偿的工作原理

 LC补偿(电容补偿)和LC+SVG补偿(智慧型无功补偿)的补偿曲线对比如图11、图12所示。

 

3智慧型无功补偿的工业应用案例

江苏某陶瓷生产企业的主要负荷为球磨机,在运行时的电流冲击很大,现场谐波以3、5、7次为主,影响了电力系统的稳定,导致补偿电容器损坏较多、系统功率因数较低。现场配电房的变压器容量为1600kVA,原电容柜装机容量300kvar。智慧型无功补偿方案应用前后的电能质量数据如图14、图15所示

 图14-智慧型无功补偿应用前的电能质量数据

 

 图15-智慧型无功补偿应用后的电能质量数据

根据现场工况,我们采用安科瑞LC+SVG综合控制的智慧型无功补偿方案,由前期测量数据估算所需整柜容量为500kvar(两台250kvar,主辅柜),另外考虑现场谐波以3、5、7次为主,LC电容补偿采用电抗率14%的电抗器与补偿电容进行串联匹配,更能有效的抑制谐波和保护电容器。通过控制器协调ANSVG-S-G 100kvar模块与电容器同时进行无功输出,对比治理前后的数据,功率因数由0.87提升到0.98,因为SVG在无功补偿的同时也能治理部分谐波,所以B相的电流畸变率由原来的23.28%降低到9.06%,达到了明显的治理效果。表1为单台装机容量250kvar智慧型动态无功补偿装置主要设备元件的配置方案。

表1-单台250kvar智慧型动态无功补偿装置主要设备元件配置方案

序号

设备元件名称

规格型号

数量

单位

1

综合补偿控制器(含触摸屏)

SVGC-CON-T

1

2

SVG

ANSVG-S-G 100kvar

1

3

电容器

ANBSMJ-0.525-30-3

5

4

电抗器

ANCKSG-0.525-4.2-14

5

5

晶闸管开关

AFK-TSC-3D/30-2

5

注:此表为主柜主要设备元件,主、辅柜共用一个综合补偿控制器,辅柜其它元件同主柜。

 

4结束语

本文对安科瑞智慧型动态无功补偿方案进行了简述,该方案融合了LC补偿和SVG补偿的优势,实时协调控制电容器和SVG补偿模块进行混合无功补偿,确保了无功补偿的快速性、连续性和准确性,同时方案成本也能被大多数企业所接受。通过工程实际案例的应用,对比方案前后的治理效果,提高了系统功率因数,同时也治理了谐波,改善了企业的用电环境,降低了企业电能质量治理投入的大成本,有利于企业的经营和生产,为企业创造了价值。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1365917.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

明基、书客、松下护眼台灯怎么样?三款热门台灯真实测评

近年来学生近视的现象越来越严重了,而且近视的年龄也越来越小了,不少还没开始上小学的孩子,就已经戴上了厚厚的近视眼镜。而那些高年级的学生更是近视的重灾区,不仅需要高强度的学习和长时间用眼,而且每晚都需要学习到…

cuttag和chip-seq的区别?

Cut&Tag(Cleavage Under Targets and Tagmentation)和ChIP-Seq(Chromatin Immunoprecipitation Sequencing)都是用于研究蛋白质与DNA相互作用的生物技术。它们在技术原理和应用方面有一些关键的区别。 1.ChIP-Seq测序 1.1 …

Linux 部署 AI 换脸

我使用的系统是 Ubuntu 20.04 文章实操主要分为以下几个部分 1、python 环境安装 2、下载 FaceFusion 上传服务器 3、创建 python 虚拟环境 4、下载 FaceFusion 依赖(这里的命令执行时间会很长,够你睡午觉了) 5、运行 FaceFusion 6、开…

基于SSM的基金投资交易管理网站的设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:采用JSP技术开发 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目&#x…

Java学习笔记(五)——时间相关类

文章目录 JDK7以前时间相关类Date 时间类阅读源码练习 SimpleDateFormat 格式化时间作用构造方法常用方法日期和时间模式练习 Calendar 日历获取Calendar对象的方法Calendar常用方法 JDK8新增时间相关类变化Date类ZoneId:时区Instant:时间戳ZoneDateTime…

ECharts 实现省份在对应地图的中心位置

使用 ECharts 下载的中国省市区的json文件不是居中的(如下图所示),此时需要修改json文件中的 cp 地理位置,设置成每个省份的中心位置 {"type": "FeatureCollection","features":[{ "type": "Feature"…

C++ 手写堆 || 堆模版题:堆排序

输入一个长度为 n 的整数数列,从小到大输出前 m 小的数。 输入格式 第一行包含整数 n 和 m 。 第二行包含 n 个整数,表示整数数列。 输出格式 共一行,包含 m 个整数,表示整数数列中前 m 小的数。 数据范围 1≤m≤n≤105 &…

护眼灯色温多少合适?盘点合适色温的护眼台灯

有了孩子,就等于同时有了软肋和铠甲,也总是在自己的能力范围内,把最好的东西给他。当孩子开始学习知识后更是如此,能力范围内最好的教育资源、最好的学习环境,以及各种与之配套的学习用具。护眼台灯在这时候就安排上了…

热钱涌向线控底盘!XYZ全栈集成引领新风向

在车身、底盘部分,中央计算区域控制带动传统车控、底盘及动力控制ECU市场迎来新一轮技术升级和域融合窗口期。线控制动、转向及空气悬架,正在加速与智能驾驶融合并进一步提升驾乘体验。 12月13-15日,2023(第七届)高工…

插画新手必看!13个免费UI插画素材网站,轻松打造炫酷设计!

即时设计 作为一个专业的设计网站,即时设计在很多情况下也可以作为一个高质量的插图网站使用。它可以为用户提供近5万个设计材料和模板,其中插图占据了很大的空间,可以为用户的设计提供很多帮助。在搜索插图材料的同时,还可以获取…

强化学习7——价值迭代算法在强化学习中的应用

价值迭代算法 价值迭代算法相对于策略迭代更加直接,它直接根据以下公式来迭代更新。 V ∗ ( s ) max ⁡ a ∈ A { r ( s , a ) γ ∑ s ′ ∈ S P ( s ′ ∣ s , a ) V ∗ ( s ′ ) } V^*(s)\max_{a\in\mathcal{A}}\{r(s,a)\gamma\sum_{s\in\mathcal{S}}P(s|s,…

二叉树的深度和高度问题(算法村第八关白银挑战)

二叉树的最大深度 104. 二叉树的最大深度 - 力扣(LeetCode) 给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1: 输入:root [3,9,20,null,null…

爱奇艺的cmd5x签名校验算法及视频下载

点击上方↑↑↑蓝字[协议分析与还原]关注我们 “ js分析,分析爱奇艺的cmd5x校验值。” 最近来了个从web网页自动下载爱奇艺的视频内容的需求,本以为很简单,却发现里面还是有些门道的,需要解决里面的校验的问题,特记录。…

Unity C# 枚举多选

枚举多选 &#x1f96a;例子&#x1f354;判断 &#x1f96a;例子 [System.Flags]public enum TestEnum{ None 0,Rooms 1 << 1,Walls1<<2,Objects1<<3,Slabs 1 << 4,All Rooms|Walls|Objects|Slabs}&#x1f354;判断 TestEnum test TestEnum.R…

(一)看参考手册学stm32基于hal库,点灯时钟配置

&#xff08;一&#xff09;看参考手册学stm32基于hal库&#xff0c;点灯时钟配置 这篇文章主要是个人的学习经验&#xff0c;想分享出来供大家提供思路&#xff0c;如果其中有不足之处请批评指正哈。 废话不多说直接开始主题&#xff0c;本人是基于STM32F407VET6芯片&#xf…

解析电商直播发展现状:成都天府锋巢直播基地能做什么?

近日&#xff0c;电商巨浪席卷过后&#xff0c;千舟如何“再”过万重山&#xff0c;已成为无数电商从业者的一轮新课题。成都新兴直播基地——天府锋巢直播产业基地&#xff0c;正在致力于打造一个包含电商直播、娱乐直播、跨境直播等多种直播业态的全域直播基地。新一轮直播业…

80/20法则-扫盲和复习篇

80/20法则-扫盲和复习篇 一、80/20法则二、对于目标三、时间管理应用四、“二八定律”基本内容总结 一、80/20法则 “80/20法则”是20世纪初意大利统计学家、经济学家维尔弗雷多帕累托提出的&#xff0c;他指出&#xff1a;在任何特定群体中&#xff0c;重要的因子通常只占少数…

基于spark的个性化招聘推荐系统

介绍 本就业推荐系统是一个基于Spark框架的个性化推荐平台&#xff0c;使用Python Django框架、Vue和Element-Plus UI组件库构建而成。该系统通过Scrapy爬虫框架抓取招聘网站的职位数据&#xff0c;用户可以根据关键词查询符合条件的职位信息&#xff0c;同时还提供了基于协同…

线性渐变linear-gradient——线性渐变实现虚线斜线条纹

1.效果图 2.html <div class"box"><div class"address-edit"></div></div> 3.css <style>*{margin: 0;padding: 0;}.box{position: relative;width: 100vw;height: 300px;background-color: #fff;}.address-edit::before…

结构体(structure)的认识

前言——————希望现在在努力的各位都能感动以后享受成功的自己&#xff01; 今天我们来了解了解一下结构体&#xff0c;结构体又有什么奥妙呢&#xff0c;废话不多说&#xff0c;何为结构体呢&#xff1f;------->结构是⼀些值的集合&#xff0c;这些值称为成员变量。结…