imgaug库指南(九):从入门到精通的【图像增强】之旅

news2024/11/28 0:42:01

引言

在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的关键所在。而imgaug,作为一个功能强大的图像增强库,为我们提供了简便且高效的方法来扩充数据集。本系列博客将带您深入了解如何运用imgaug进行图像增强,助您在深度学习的道路上更进一步。我们将从基础概念讲起,逐步引导您掌握各种变换方法,以及如何根据实际需求定制变换序列。让我们一起深入了解这个强大的工具,探索更多可能性,共同推动深度学习的发展。


前期回顾

链接主要内容
imgaug库指南(一):从入门到精通的【图像增强】之旅介绍了imgaug库的主要功能、安装方式、提供一个简单的数据增强示例(针对一副图像)
imgaug库指南(二):从入门到精通的【图像增强】之旅介绍了如何利用imgaug库对批量图像进行数据增强并可视化
imgaug库指南(三):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 高斯模糊
imgaug库指南(四):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 均值模糊
imgaug库指南(五):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 中值模糊/滤波,并介绍了如何利用【中值滤波】过滤椒盐噪声
imgaug库指南(六):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 双边模糊/滤波
imgaug库指南(七):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 运动模糊
imgaug库指南(八):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 均值迁移模糊

在本博客中,我们将向您详细介绍imgaug库的数据增强方法 —— 加性噪声(Add方法)


加性噪声(Add)

功能介绍

iaa.Addimgaug库中的一个方法,用于对图像进行加法运算。加法运算可以用于增加图像的亮度,也可以用于为图像添加加性噪声。

语法

import imgaug.augmenters as iaa
iaa.Add(value=80, per_channel=False)
  • value:
    • value为整数,则为每幅图像的像素值加上value
    • value为元组(a, b),则为每幅图像的像素值加上从区间[a, b]中随机采样的整数;
    • value为列表,则为每幅图像的像素值加上从列表中随机采样的整数;
  • per_channel:
    • per_channelTrue,且value为元组(a, b)或列表,则为每幅图像的每个通道的像素值加上随机采样的整数(三通道则三个随机整数);
    • per_channelFalse,且value为元组(a, b)或列表,则为每幅图像的每个通道的像素值加上随机采样的相同整数(三个通道都是同一个随机整数);
    • per_channel为区间[0,1]的浮点数,假设per_channel=0.6,那么对于60%的图像,per_channelTrue;对于剩余的40%的图像,per_channelFalse

示例代码

  1. 使用不同的value
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt

# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)


# 创建亮度增强器
aug1 = iaa.Add(value=-80, per_channel=False)
aug2 = iaa.Add(value=80, per_channel=False)
aug3 = iaa.Add(value=160, per_channel=False)


# 对图像进行数据增强
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)

# 展示原始图像和数据增强后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Augmented Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Augmented Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Augmented Image3")
plt.show()

运行结果如下:

图1 原图及数据增强结果可视化

可以看到,三幅数据增强后的图像,其亮度相对于原图而言,都整体变亮/暗了。

  1. 使用元组类型的value,且per_channelTrue
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt

# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# 创建增强器
aug1 = iaa.Add(value=(-80, 80), per_channel=True)
aug2 = iaa.Add(value=(-80, 80), per_channel=True)
aug3 = iaa.Add(value=(-80, 80), per_channel=True)

# 对图像进行数据增强
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)

# 展示原始图像和数据增强后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Augmented Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Augmented Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Augmented Image3")
plt.show()

运行结果如下:

图2 原图及数据增强结果可视化

可以从图2看出,当使用元组类型的value,且per_channelTrue时 ⇒ 增强器为RGB图像的三个通道分别添加了三个随机整数 ⇒ 数据增强后,新图像的颜色整体上发生了很大的变化。

注意事项

  1. 值的选择value参数决定了添加到图像的亮度值。如果选择的值过大,可能会导致图像出现严重失真。因此,需要根据图像的内容和预期效果来选择合适的值。
  2. 通道处理per_channel参数决定了是否对每个颜色通道应用相同的value。如果设置为True,则每个通道都增加相同的值;如果设置为False(默认),则所有通道都增加相同的值。需要根据具体情况选择合适的设置。
  3. 计算效率Add方法的时间复杂度为O(1),即其执行时间不依赖于输入图像的大小。因此,它在处理大型图像时相对较快。
  4. 与其他增强器的结合使用:虽然示例中只使用了Add方法,但实际上可以在增强器序列中使用多个其他方法与Add方法结合使用,以创建更复杂的图像效果。
  5. 结果的可重复性:由于加法运算具有确定性,每次使用相同的输入和参数调用Add方法时,将获得相同的结果。

总结

iaa.Addimgaug库中一个简单而实用的方法,用于增加图像的亮度。通过调整value参数,可以在不同程度上增加图像的亮度。与其他图像增强方法结合使用,可以创建出更多样化的图像效果。使用时需要注意选择合适的值以避免过度增亮的情况。


小结

imgaug是一个强大的图像增强库,它可以帮助你创建出丰富多样的训练数据,从而改进你的深度学习模型的性能。通过定制变换序列和参数,你可以轻松地适应各种应用场景,从计算机视觉到医学影像分析。随着深度学习的发展,imgaug在未来将继续发挥重要作用。因此,将imgaug纳入你的数据增强工具箱是一个明智的选择。

参考链接


结尾

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见,因为这对我们来说意义非凡。
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果您觉得我们的博文给您带来了启发,那么,希望能为我们点个免费的赞/关注您的支持和鼓励是我们持续创作的动力
请放心,我们会持续努力创作,并不断优化博文质量,只为给带来更佳的阅读体验。
再次感谢的阅读,愿我们共同成长,共享智慧的果实!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1365587.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

qt-C++笔记之QProcess

qt-C笔记之QProcess code review! 文章目录 qt-C笔记之QProcess一.示例:QProcess来执行系统命令ls -l命令并打印出结果说明 二.示例:QProcess来执行系统命令ls -l命令并打印出结果,代码进一步丰富三.示例:使用 QProcess 在 Qt 中…

ROS+moveit+jakaminicob仿真运动

先浅浅的放一个官方的c文档: Motion Planning API — moveit_tutorials Melodic documentation 目录 一、实现运动到目标点的程序 二、在rviz里面新建扫描平台 一、实现运动到目标点的程序 (等我得空了补一个c运行环境部署说明) #inclu…

天线选型的关注点

一、一般注意事项 频段 常用频段为: 2.4GHz~2.5GHz, 5.15GHz~5.85GHz,以及双频。增益 内置天线主要关注对所需要的面的覆盖情况,外置天线主要关注水平面的增益要求,常见外置天…

Java面向对象(抽象类,接口,内部类)

文章目录 今日内容教学目标 第一章 抽象类1.1 概述1.1.1 抽象类引入 1.2 abstract使用格式1.2.1 抽象方法1.2.2 抽象类1.2.3 抽象类的使用 1.3 抽象类的特征1.4 抽象类的细节1.5 抽象类存在的意义 第二章 接口2.1 概述2.2 定义格式2.3 接口成分的特点2.3.1.抽象方法2.3.2 常量2…

网络技术基础入门全套实验-厦门微思网络CCNA实验手册

知识改变命运,技术就是要分享,有问题随时联系,免费答疑,欢迎联系! 微思简介(https://www.xmws.cn) 微思成立于2002年,是一个诚信敬业、积极向上、充满活力、专注技术服务的企业。 微思获得了八…

什么是短视频矩阵系统?效果是怎么样的?

短视频矩阵系统是一种通过将多个短视频连接起来形成一个整体的系统。它的效果是可以提供一种连贯而有序的观看体验,使观众可以连续地观看一系列相关的短视频内容。 短视频矩阵系统的运作方式如下:首先,用户在平台上选择一个短视频开始观看。…

小型洗衣机什么牌子好?迷你洗衣机品牌推荐

随着现代社会的快速发展,洗衣机已经成为了家家必备的电器产品。但是我们清洗贴身衣物的话,并不能直接扔进洗衣机里面洗,主要原因就是会与其他的衣物产生交叉的感染,而且又不能更好地除去贴身衣物上的细菌,因此一台内衣…

Visual Studio 2013 “即将退休”

新年快乐! 这也是向各位开发者提醒 Visual Studio 支持生命周期中即将到来的好时机。 对 Visual Studio 2013 的支持即将在今年(2024年)的4月9日结束。如果你正在使用旧版本的 Visual Studio,我们强烈建议您升级您的开发环境到最新的 Visual Studio 20…

StarRocks Awards 2023 年度贡献人物

2023 年行将结束。这一年,StarRocks 继续全方位大步向前迈进,在 300 贡献者的辛勤建设下,社区先后发布了 50 版本,并完成了从全场景 OLAP 到云原生湖仓的进化。 贡献者们的每一行代码、每一场布道,推动着 StarRocks 社…

京东商品详情API接口(item_get-获得JD商品详情)电商领域的重要角色

电商API接口在电商领域中扮演着重要的角色,它们为电商平台提供了许多功能和便利。以下是电商API接口的一些主要用途: 商品信息查询:通过API接口,第三方开发者或商家可以查询电商平台上的商品信息,包括商品详情、价格、…

字节跳动机器人研究团队:用大规模视频数据训练GR-1,机器人轻松应对复杂任务

最近 GPT 模型在 NLP 领域取得了巨大成功。GPT 模型首先在大规模的数据上预训练,然后在特定的下游任务的数据上微调。大规模的预训练能够帮助模型学习可泛化的特征,进而让其轻松迁移到下游的任务上。 但相比自然语言数据,机器人数据是十分稀…

k8s yaml文件pod的生命周期

Pod是k8s中最小限额资源管理组件,也是最小化运行容器化的应用的资源管理对象。 Pod是一个抽象的概念,可以理解为一个或者多个容器化应用的集合。 在一个pod当中运行一个容器是最常用的方式。 在一个pod当中同时运行多个容器,在一个pod当中…

微软最新研究成果:使用GPT-4合成数据来训练AI模型,实现SOTA!

文本嵌入是各项NLP任务的基础,用于将自然语言转换为向量表示。现有的大部分方法通常采用复杂的多阶段训练流程,先在大规模数据上训练,再在小规模标注数据上微调。此过程依赖于手动收集数据制作正负样本对,缺乏任务的多样性和语言多…

王中阳Go赠书活动第一期:《TVM编译器原理与实践》

文章目录 前言TVM编译器的实现过程关于《TVM编译器原理与实践》编辑推荐内容简介作者简介图书目录书中前言/序言《TVM编译器原理与实践》全书速览入手《TVM编译器原理与实践》传送门:结束语参加抽奖 前言 随着人工智能的发展,计算机视觉、自然语言处理和…

算法第4版 第2章排序

综述:5个小节,四种排序应用,初级排序、归并排序、快速排序、优先队列 2.1.初级排序 排序算法模板,less(), exch(), 排序代码在sort()方法中; 选择排序:如升序排列,1.找到数组中最小的元素&am…

2024年R1快开门式压力容器操作证模拟考试题库及R1快开门式压力容器操作理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年R1快开门式压力容器操作证模拟考试题库及R1快开门式压力容器操作理论考试试题是由安全生产模拟考试一点通提供,R1快开门式压力容器操作证模拟考试题库是根据R1快开门式压力容器操作最新版教材&#…

【IPC通信--消息队列】

消息队列(也叫做报文队列)是一个消息的链表。可以把消息看作一个记录,具有特定的格式以及特定的优先级。对消息队列有写权限的进程可以向消息队列中按照一定的规则添加新消息;对消息队列有读权限的进程则可以从消息队列中读走消息…

优秀案例 | 嘉吉动物营养虚拟人IP“小嘉”, 虚拟动力提供常态化高效率短视频制作工具

在流量见顶的时代 品牌宣传逐渐精细化 塑造一个具备亲和力及创新感的虚拟IP 可以持续扩大品牌影响力 与挖掘品牌更多可能性 「嘉吉动物营养」紧随营销趋势,通过广州虚拟动力「虚拟人运营套装」,将虚拟人IP运营与品牌宣传相结合,带动品牌形…

从音乐“卷”到直播,涨价也救不了腾讯音乐

继6月大规模涨价之后,腾讯音乐娱乐集团(下称“腾讯音乐”,01698.HK)旗下QQ音乐会员再次涨价。 「不二研究」据腾讯音乐三季报发现:在会员数这一关键指标上,腾讯音乐在三季度的月活跃用户从去年同期的6.20亿…

STM32深入系列02——BootLoader分析与实现

文章目录 1. STM32程序升级方法1.1 ST-Link / J-link下载1.2 ISP(In System Programing)1.3 IAP(In Applicating Programing)1.3.1 正常程序运行流程1.3.2 有IAP时程序运行流程 2. STM32 Bootloader实现2.1 方式一:Boo…