王中阳Go赠书活动第一期:《TVM编译器原理与实践》

news2024/11/28 2:45:17

文章目录

  • 前言
  • TVM编译器的实现过程
  • 关于《TVM编译器原理与实践》
  • 编辑推荐
  • 内容简介
  • 作者简介
  • 图书目录
  • 书中前言/序言
  • 《TVM编译器原理与实践》全书速览
  • 入手《TVM编译器原理与实践》传送门:
  • 结束语
  • 参加抽奖

前言

随着人工智能的发展,计算机视觉、自然语言处理和语音识别等领域的需求不断增加。为了更好地满足这些需求,许多深度学习框架被开发出来,其中TVM(TVirtual Machine)是一种优秀的编译器,能够将深度学习模型编译为高效的机器码。而且TVM编译器的核心思想,就是将深度学习模型转化为高效的计算图,并优化图中的计算节点。这样一来,模型运行时的计算时间就会大大减少,同时还可以提高模型的功耗效率。TVM编译器的实现过程可以分为三个主要部分:前端、中间层和后端。

TVM编译器的实现过程

关于TVM编译器的实现过程分为三大核心内容。首先是前端部分,它负责将深度学习框架中的模型转化为抽象的计算图。在这个过程中,前端可以根据模型的结构和特性进行一些预处理操作,例如图优化和剪枝。接下来是中间层将接收前端传递过来的计算图,并进行一系列的优化操作。这些操作包括图变换、图剪枝、数据布局、内存优化等。最后是优化后的计算图将传递给后端部分,后端将根据目标硬件的特性生成高效的机器码。

TVM编译器的实践过程需要结合具体的深度学习框架和硬件平台,比如我们需要选择一个适合的深度学习框架,并在该框架中开发和训练模型。又如我们可以使用TVM提供的前端接口将模型转化为计算图,并进行一系列的优化操作。再如需要选择适合的后端,TVM支持多种硬件平台,包括CPU、GPU和FPGA等。根据目标平台的特性,我们可以使用TVM提供的后端接口生成高效的机器码,并进行性能测试和优化。

在实践中,TVM编译器具有许多优点,比如TVM可以针对特定的硬件平台进行优化,可以充分发挥硬件的计算能力;再如TVM提供了丰富的优化功能,可以对计算图进行灵活的优化操作,有效提高模型的运行效率;又如TVM还支持多种深度学习框架和编程语言,方便开发者使用,以及TVM具有较低的学习曲线,开发者可以快速上手并进行模型的编译和优化。

关于《TVM编译器原理与实践》

接下来给大家推荐一本关于深度学习必备的书籍,这是一本关于TVM编译器的原理和实际实践的书,具体信息如下所示。

在这里插入图片描述

编辑推荐

适读人群 :从事AI算法,软件,AI芯片,编译器开发工程技术人员

人工智能(Artificial Intelligence,AI)已经在全世界信息产业中获得广泛应用。深度学习模型推动了AI技术革命,如 TensorFlow、PyTorch、MXNet、Caffe等。大多数现有的系统框架只针对小范围的服务器级 GPU进行过优化,因此需要做很多的优化努力,以便在汽车、手机端、物联网设备及专用加速器(FPGA、ASIC)等其他平台上部署。随着深度学习模型和硬件后端数量的增加,TVM构建了一种基于中间表示 (IR)的统一解决方案。TVM不仅能自动优化深度学习模型,还提供了跨平台的高效开源部署框架。大模型的热度逐渐上升,将人工智能理论及算法框架转为落地项目实现,TVM是一个很好的桥梁。因此,本书将得到广大读者的喜爱。

内容简介

TVM(Tensor Virtual Machine, 张量虚拟机)是一种开源的模型编译框架,旨在将机器学习模型自动编译成可供下层硬件执行的机器语言,从而利用多种类型的算力。其工作原理是,先将深度学习模型进行优化推理、内存管理与线程调度,再借用LLVM框架将模型部署在CPU、GPU、FPGA、ARM等硬件设备上。

本书全面解析TVM的主要功能,帮助读者理解TVM工作原理,以及使用 TVM对深度学习与机器学习进行优化与部署。

本书结合作者多年的工作与学习经验,力求将TVM基础理论与案例实践融合在一起进行详细讲解。全书共9章,包括TVM基本知识,使用TVM开发,算子融合与图优化,TVM量化技术,TVM 优化调度,Relay IR,代码生成,后端部署与OpenCL(Open Computing Language,开放运算语言),自动调度、自动搜索与成本模型。各章除了包含重要的知识点和实践技能外,还配备了精心挑选的典型案例。

本书适合从事AI算法、软件、编译器开发以及硬件开发等专业的工程技术人员、科研工作人员、技术管理人员阅读,也可以作为编译器相关专业高校师生的参考用书。

作者简介

吴建明,上海交通大学模式识别与智能系统专业博士毕业。长期从事人工智能芯片设计,尤其擅长TVM/LLVM编译器、AI框架、自动驾驶、芯片制造,嵌入式系统等领域的理论研究与技术创新。长期在一线工作,包括产品设计与代码实现等,主持和参与过30多项产品的研发。还参与过国家自然科学基金、上海市科委项目,并在核心期刊公开发表过8篇论文,其中6篇是第一作者。

图书目录

第1章 TVM基本知识/

1.1TVM基本原理/

1.1.1TVM概述/

1.1.2TVM 模型优化部署概述/

1.2TVM编译过程/

1.2.1编译流程/

1.2.2TVM编译数据结构/

1.2.3TVM编译数据处理/

1.2.4TVM的Pass过程/

1.3TVM开源工程逻辑架构/

1.3.1代码库代码结构/

1.3.2代码自动内核/

1.4TVM应用支持/

1.4.1TVM的工作流程/

1.4.2支持多语言与多平台/

1.4.3TVM应用场景/

1.4.4TVM优化模型推理/

1.4.5TVM编译器与运行时组件/

1.4.6TVM运行时主要模块/

1.4.7TVM简单代码生成编译示例/

1.4.8TVM各模块之间的关系/

1.5TVM特色与挑战/

1.5.1TVM特色/

1.5.2支持多种后端设备/

1.5.3TVM应对的挑战/

第2章 使用TVM开发/

2.1配置TVM环境/

2.1.1apache TVM源码下载/

2.1.2配置TVM的开发环境/

2.1.3TVM conda环境使用方法/

2.1.4编译实现/

2.1.5导入模型方法/

2.2在conda环境编译优化TVM yolov3示例/

2.3Python与C++的调用关系/

2.3.1TVM中底层C++数据结构/

2.3.2进行函数注册/

2.3.3上层Python调用/

2.4TVM自定义代码示例/

2.4.1TVM如何添加代码/

2.4.2TVM代码生成实现示例/

2.5用TVM实现算法全流程/

2.5.1配置张量与创建调度/

2.5.2进行降级算子优化/

2.5.3构建host目标程序/

2.5.4实现后端代码生成/

第3章 算子融合与图优化/

3.1算子概述/

3.1.1TVM融合组件示例/

3.1.2优化计算图/

3.2图GCN融合/

3.2.1图的概念/

3.2.2深度学习新特征/

3.3图融合GCN示例/

3.3.1GCN的PyTorch实现/

3.3.2融合BN与Conv层/

3.4TVM图优化与算子融合/

3.4.1图与算子优化/

3.4.2自定义算子/

3.4.3算子融合步骤/

3.4.4向Relay中添加operator/

3.5端到端优化/

3.5.1 AI框架概述/

3.5.2计算图优化层/

3.5.3TVM算子融合的4种方法/

3.5.4数据布局转换/

3.5.5张量表达式语言/

3.5.6调度空间分析/

3.6 TVM图优化与算子融合方案分析/

3.6.1图优化框架分析/

3.6.2TVM优化基础分析/

3.6.3TVM优化参数/

3.6.4算子优化图示/

3.6.5自定义图级优化/

3.7支配树技术/

3.7.1支配树概述/

3.7.2算子融合方案及示例/

3.8控制流与优化器/

3.8.1控制流/

3.8.2优化器/

3.9TVM存储与调度/

3.9.1TVM编译器优化/

3.9.2图结构基本优化/

3.9.3张量计算/

3.10多功能张量加速器VTA/

3.10.1VTA-TVM 硬件-软件堆栈/

3.10.2VTA主要功能/

3.10.3VTA示例/

3.10.4VTA计算模块/

3.10.5VTA控制/

3.10.6microTVM模型/

3.11TVM代码库结构与示例/

3.11.1代码库结构/

3.11.2张量添加示例/

3.12主机驱动的执行/

3.12.1 firmware二进制文件/

3.12.2计算声明/

3.12.3数据平铺/

3.12.4卷积运算/

3.12.5空间填充/

第4章 TVM量化技术/

4.1TVM量化概述/

4.1.1TVM量化现状/

4.1.2TVM量化原理/

4.2int8量化与TVM执行/

4.2.1两种主要量化方案/

4.2.2int8量化原理分析/

4.2.3KL散度计算/

4.2.4实现int8量化/

4.3低精度训练与推理/

4.4NN量化/

4.4.1神经网络量化概述/

4.4.2优化数据与网络/

4.4.3前向推理与反向传播/

4.5熵校准示例/

4.6TVM量化流程/

4.6.1Relay的两种并行量化/

4.6.2Relay优化Pass方法/

4.6.3量化处理硬件说明/

4.6.4阈值估计方案/

4.6.5模拟量化误差/

4.6.6尺度计算/

4.6.7数据类型分配/

4.6.8数据类型分配日志/

4.6.9神经网络低精度量化/

4.7TVM量化程序分析/

第5章 TVM优化调度/

5.1TVM 运行时系统/

5.1.1TVM 运行时系统框架/

5.1.2PackedFunc编译与部署/

5.1.3构建 PackedFunc模块/

5.1.4远程部署方法/

5.1.5TVM 对象与编译器分析/

5.2自动微分静态图与动态图/

5.2.1计算图分类/

5.2.2动态图实现示例/

5.3机器学习自动微分/

5.3.1微分方法/

5.3.2手动微分/

5.3.3数值微分/

5.3.4符号微分/

5.3.5自动微分/

5.3.6自动微分实现示例/

5.4稀疏矩阵分析/

5.4.1稀疏矩阵概念/

5.4.2稀疏矩阵优化/

5.4.3特定矩阵压缩存储/

5.4.4稀疏矩阵实现示例/

5.5TVM张量计算分析/

5.5.1生成张量运算/

5.5.2嵌套并行与协作/

5.5.3张量化计算/

5.5.4显式内存延迟隐藏/

第6章 Relay IR/

6.1TVM数据介绍/

6.1.1TVM模块框架介绍/

6.1.2Relay IR原理简介/

6.1.3构建计算图/

6.1.4let绑定与作用域/

6.2IR代码生成/

6.2.1前端优化/

6.2.2节点优化/

6.2.3代数优化/

6.2.4数据流级别的优化/

6.3在Relay中注册算子/

6.3.1添加节点,定义编译参数/

6.3.2运算类型关系分析/

6.3.3在C++中进行RELAY_REGISTER_OP宏注册/

6.3.4算子注册与调度/

6.3.5注册函数API分析/

6.3.6将Python API打包/

6.3.7单元测试分析/

6.4TVM中IR示例/

6.4.1IRModule技术分析/

6.4.2TVM Runtime(运行时)分析/

6.4.3预测部署实现/

6.4.4动态图实现/

书中前言/序言

人工智能(Artificial Intelligence,AI)已经在全世界信息产业中获得广泛应用。深度学习模型推动了AI技术革命,如 TensorFlow、PyTorch、MXNet、Caffe等。大多数现有的系统框架只针对小范围的服务器级 GPU进行过优化,因此需要做很多的优化努力,以便在汽车、手机端、物联网设备及专用加速器(FPGA、ASIC)等其他平台上部署。随着深度学习模型和硬件后端数量的增加,TVM构建了一种基于中间表示 (IR)的统一解决方案。TVM不仅能自动优化深度学习模型,还提供了跨平台的高效开源部署框架。

有了TVM的帮助,只需要很少的定制工作,就可以轻松地在手机、嵌入式设备甚至浏览器上运行深度学习模型。TVM 还为多种硬件平台上的深度学习计算提供了统一的优化框架,包括一些有自主研发计算原语的专用加速器。TVM是一个深度学习编译器,所有人都能随时随地使用开源框架学习研发。围绕TVM形成了多元化社区,社区成员包括硬件供应商、编译器工程师和机器学习研究人员等,共同构建了一个统一的可编程软件堆栈,丰富了整个机器学习技术生态系统。

TVM是一个新型的AI编译器,广泛应用于各种产品研发中,在企业与学术研究中有很大的影响。但是,目前市面上有关TVM的书还很少,本书试图弥补这个空缺。全书的特点总结如下:

第一,从TVM的概念入手,分析了TVM的基本原理和关键支撑技术。

第二,从TVM的环境搭建到案例实践逐步展开,分析如何使用TVM进行实战开发。

第三,介绍了TVM的重要关键技术,如算子与图融合、量化技术、Relay IR(中间表示)、优化调度、编译部署等,分析了这些模块的理论与案例实践。

第四,TVM对后端相关的技术进行了分析与实践,包括代码生成、自动调度、自动搜索与成本模型等。

本书的写作过程中,得到了家人的全力支持,在此,对他们表示深深的感谢。也感谢机械工业出版社的编辑们,因为有他们的辛勤劳作和付出,本书才得以顺利出版。由于编者技术能力有限,书中难免存在纰漏,还望广大读者不吝赐教。

《TVM编译器原理与实践》全书速览

在这里插入图片描述

入手《TVM编译器原理与实践》传送门:

https://item.jd.com/13978563.html,个人觉得这本书非常的不错,尤其是对于人工智能领域开发者来讲,是一本不可多得的好书,值得拥有去学习。

结束语

通过本文的介绍,总的来说,TVM编译器是一种优秀的深度学习模型编译工具,可以将模型优化为高效的机器码,它的原理与实践可以帮助我们快速开发和优化深度学习模型,提高模型的运行效率和功耗效率。在未来的发展中,TVM有望成为深度学习领域的重要工具,为人工智能的发展做出更大的贡献,所以说在人工智能领域或者将要从事人工智能相关工作的小伙伴,需要抓紧时间学习了解TVM编译器了,紧跟技术发展脚步才能不被“淘汰”。

参加抽奖

加我微信:wangzhongyang1993,备注:CSDN抽奖,邀你进抽奖群参与抽奖。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1365564.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

算法第4版 第2章排序

综述:5个小节,四种排序应用,初级排序、归并排序、快速排序、优先队列 2.1.初级排序 排序算法模板,less(), exch(), 排序代码在sort()方法中; 选择排序:如升序排列,1.找到数组中最小的元素&am…

2024年R1快开门式压力容器操作证模拟考试题库及R1快开门式压力容器操作理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年R1快开门式压力容器操作证模拟考试题库及R1快开门式压力容器操作理论考试试题是由安全生产模拟考试一点通提供,R1快开门式压力容器操作证模拟考试题库是根据R1快开门式压力容器操作最新版教材&#…

【IPC通信--消息队列】

消息队列(也叫做报文队列)是一个消息的链表。可以把消息看作一个记录,具有特定的格式以及特定的优先级。对消息队列有写权限的进程可以向消息队列中按照一定的规则添加新消息;对消息队列有读权限的进程则可以从消息队列中读走消息…

优秀案例 | 嘉吉动物营养虚拟人IP“小嘉”, 虚拟动力提供常态化高效率短视频制作工具

在流量见顶的时代 品牌宣传逐渐精细化 塑造一个具备亲和力及创新感的虚拟IP 可以持续扩大品牌影响力 与挖掘品牌更多可能性 「嘉吉动物营养」紧随营销趋势,通过广州虚拟动力「虚拟人运营套装」,将虚拟人IP运营与品牌宣传相结合,带动品牌形…

从音乐“卷”到直播,涨价也救不了腾讯音乐

继6月大规模涨价之后,腾讯音乐娱乐集团(下称“腾讯音乐”,01698.HK)旗下QQ音乐会员再次涨价。 「不二研究」据腾讯音乐三季报发现:在会员数这一关键指标上,腾讯音乐在三季度的月活跃用户从去年同期的6.20亿…

STM32深入系列02——BootLoader分析与实现

文章目录 1. STM32程序升级方法1.1 ST-Link / J-link下载1.2 ISP(In System Programing)1.3 IAP(In Applicating Programing)1.3.1 正常程序运行流程1.3.2 有IAP时程序运行流程 2. STM32 Bootloader实现2.1 方式一:Boo…

开启Android学习之旅-2-架构组件实现数据列表及添加(kotlin)

Android Jetpack 体验-官方codelab 1. 实现功能 使用 Jetpack 架构组件 Room、ViewModel 和 LiveData 设计应用;从sqlite获取、保存、删除数据;sqlite数据预填充功能;使用 RecyclerView 展示数据列表; 2. 使用架构组件 架构组…

HarmonyOS4.0系统性深入开发16进程模型概述

进程模型概述 HarmonyOS的进程模型: 应用中(同一包名)的所有UIAbility运行在同一个独立进程中。WebView拥有独立的渲染进程。 基于HarmonyOS的进程模型,系统提供了公共事件机制用于一对多的通信场景,公共事件发布者…

「网络安全术语解读」SARIF详解

引言:什么是SARIF?它的产生背景是什么?SARIF主要包含哪些内容?使用SARIF有哪些好处? 1. SARIF简介 SARIF(Static Analysis Results Interchange Format ,静态分析结果交换格式)是一…

PTA——猴子吃桃问题

一只猴子第一天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个;第二天早上又将剩下的桃子吃掉一半,又多吃了一个。以后每天早上都吃了前一天剩下的一半加一个。到第N天早上想再吃时,见只剩下一个桃子了…

BOM介绍

文章目录 1、简介主要作用 2、BOM的组成2.1 窗口对象window2.1.1 window对象特点2.1.2 window作用域2.1.3 window对象常见方法**第一类:系统对话框**第二类:控制浏览器窗口方法第三类:与定时器有关的方法 1、简介 BOM(Browser Ob…

docker安裝gocd-server,并配置gitlab授权登录

gocd的地址:Installing GoCD server on Windows | GoCD User Documentation gocd文档:GitHub - gocd/docker-gocd-server: Docker server image for GoCD 一、docker拉取gocd镜像 #拉取server镜像 docker pull gocd/gocd-server:v21.1.0docker pull g…

3的幂00

题目链接 3的幂 题目描述 注意点 无 解答思路 不断除以3直到除数或余数为0为止,判断除完后的数字是否为1 代码 class Solution {public boolean isPowerOfThree(int n) {while (n / 3 ! 0) {if (n % 3 ! 0) {return false;}n n / 3;}return n 1;} }关键点 …

springmvc内嵌tomcat、tomcat整合springmvc、自研国产web中间件

springmvc内嵌tomcat、tomcat整合springmvc、自研国产web中间件 这是由于公司老项目转化springboot存在太多坑,特别是hibernate事务一条就坑到跑路,你又不想搞没听说过的国产中间件兼容,又不想搞weblogic、WebSphere等中间件的适配&#xff…

【蓝桥杯软件赛 零基础备赛20周】第7周——二叉树

文章目录 1 二叉树概念2 二叉树的存储和编码2.1 二叉树的存储方法2.2 二叉树存储的编码实现2.3 二叉树的极简存储方法 3 例题4 习题 前面介绍的数据结构数组、队列、栈,都是线性的,它们存储数据的方式是把相同类型的数据按顺序一个接一个串在一起。简单的…

MPL3115A2大气压温度采集芯片的工作原理与特点详解

目录 一、引言 二、MPL3115A2主要特点和功能 三、主要优势 3.1 内部自动补偿 3.2 FIFO 四、硬件原理图 4.1 硬件连接 五、软件配置 六、资料获取 一、引言 MPL3115A2是一款高精度的大气压力传感器,能够测量大气压力、海拔高度和温度。它采用了MEMS&#xf…

Redis内存策略:「过期Key删除策略」+ 「内存淘汰策略」

Redis之所以性能强,最主要的原因就是基于内存存储,然而单节点的Redis其内存大小不宜过大,否则会影响持久化或主从同步的性能。 Redis内存满了,会发生什么? 在Redis的运行内存达到了某个阈值,就会触发内存…

Linux - No space left on device

问题描述 No space left on device 原因分析 说明在服务器设备上的存储空间已经满了,不能再上传或者新建文件夹或者文件等。 解决方案 确认查看服务器系统的磁盘使用情况是否是真的已经没有剩余空间,复制下面命令在服务器上运行,然后发现如果…

CSS 彩虹按钮效果

<template><view class"content"><button class"btn">彩虹按钮</button></view> </template><script></script><style>body{background-color: #000;}.content {margin-top: 300px;}.btn {width: 1…

jenkins忘记密码后的操作

1、先停止 jenkins 服务 systemctl stop jenkins 关闭Jenkins服务 或者杀掉进程 ps -ef | grep jenkins &#xff5c;awk {print $2} | grep -v "grep" | xargs kill -9 2、找到 config.xml 文件 find /root -name config.xml3、备份config.xml文件 cp /root/.jen…