Kafka(五)生产者

news2024/11/15 11:06:02

目录

  • Kafka生产者
  • 1 配置生产者
    • bootstrap.servers
    • key.serializer
    • value.serializer
    • client.id=""
    • acks=all
    • buffer.memory=33554432(32MB)
    • compression.type=none
    • batch.size=16384(16KB)
    • max.in.flight.requests.per.connection=5
    • max.request.size=1048576(1MB)
    • receive.buffer.bytes=65536 (64KB)
    • send.buffer.bytes=131072 (128KB)
    • enable.idempotence=true
    • partitioner.class
    • partitioner.ignore.keys=false
    • interceptor.classes
  • 2 发送时间相关配置
    • max.block.ms=60000 (1 minute)
    • delivery.timeout.ms=120000 (2 minutes)
    • retries=2147483647
    • retry.backoff.ms=100
    • request.timeout.ms=30000 (30 seconds)
    • linger.ms
  • 3 创建生产者
  • 4 发送消息到Kafka
    • 4.1 发送并忘记
    • 4.2 同步发送
    • 4.3 异步发送
  • 5 序列化器
    • 5.1 自定义序列化器
    • 5.1 Avro序列化器
  • 7 分区
  • 7 拦截器
  • 8 配额和节流

Kafka生产者

Kafka 生产者是 Apache Kafka 中的一个组件,用于将数据发布到 Kafka 集群中的主题(topic)中。生产者负责将消息发送到 Kafka 集群,并且可以指定消息的键(key)和分区(partition)。生产者可以采用异步或同步的方式发送消息,并且可以配置消息的压缩、序列化和批处理等属性。

Kafka 生产者可以通过 Kafka 的 API 或者客户端库来实现,常见的客户端库包括 Java、Python、Go、C++ 等。生产者可以在分布式环境中部署,并且可以通过多个线程同时发送消息,以提高生产效率和吞吐量。

Kafka 生产者的主要作用是将数据快速、可靠地发送到 Kafka 集群中,以供消费者消费。生产者的高性能和可靠性是 Kafka 的关键特性之一,使得 Kafka 在大数据处理和实时数据流处理中得到广泛应用。
下图描述了生产者和broker之间的交互过程:
生产者生产流程
I will add more comments for this diagram later …

1 配置生产者

bootstrap.servers

这个参数是常用的KafkaProducer和KafkaConsumer用来连接Kafka集群的入口参数,这个参数对应的值通常是Kafka集群中部分broker的地址,比如:host1:9092,host2:9092,不同的broker地址之间用逗号隔开。这个参数使用的比较频繁,久而久之的就会认为这个参数配置的是所要连接的Kafka集群的broker地址,包括很多Kafka的初学者而言也会Keep这个观点,其实这个是不准确的。bootstrap.servers这个参数是用来配置发现Kafka集群信息的,这个意味着什么呢?
KafkaProducer与Kafka集群建立连接的过程是:

  1. KafkaProducer向bootstrap.servers所配置的地址指向的其中一个Server发送MetadataRequest请求;
  2. bootstrap.servers所配置的地址指向的Server返回MetadataResponse给KafkaProducer,MetadataResponse中包含了Kafka集群的所有元数据信息。
  3. KafkaProducer在元数据中找到集群的首领地址,向它发送消息

key.serializer

一个类名,用来序列化消息键为字节数组。Broker接收的键和值都是字节数组。

value.serializer

一个类名,用来序列化消息值为字节数组。

client.id=“”

发出请求时要传递给服务器的id字符串。这样做的目的是通过允许在服务器端请求日志中包含逻辑应用程序名称,能够跟踪ip/端口以外的请求源。

acks=all

此参数指定了生产者在多少个分区副本收到消息的情况下才会认为消息写入成功。允许以下设置:
acks=0。如果设置为零,则生产者根本不会等待来自服务器的任何确认。该记录将立即添加到套接字缓冲区,并被视为已发送。在这种情况下,无法保证服务器已收到记录,重试配置也不会生效(因为客户端通常不会知道任何故障)。为每条记录返回的偏移量将始终设置为-1。
acks=1。表示只要首领收到消息,并将记录成功写入其本地日志,就返回成功响应,不等待所有追随者的确认。在这种情况下,如果首领在确认成功后,追随者复制之前崩溃,则记录将会丢失。
acks=all。表示首领将等待同步复制集合中所有的副本都确认收到了记录。这保证了只要至少有一个同步复制副本保持活动状态,记录就不会丢失。这是最有力的保证。这相当于acks=-1的设置。
请注意,启用幂等性要求此配置值为“all”。如果设置了冲突的配置并且没有显式启用幂等性,则会禁用幂等性。

buffer.memory=33554432(32MB)

生产者可用于缓冲等待发送到服务器的记录的总内存字节数。如果记录的发送速度快于它们传递到服务器的速度,则生产者将阻止max.block.ms,之后将引发异常。
此设置应大致对应于生产者将使用的总内存,但不是硬绑定的,因为并非生产者使用的所有内存都用于缓冲。一些额外的内存将用于压缩(如果启用了压缩)以及维护飞行中的请求。

compression.type=none

生产者生成的所有数据的压缩类型。默认值为none(即无压缩)。有效值为none、gzip、snappy、lz4或zstd。压缩是全批数据,因此批处理的效果也会影响压缩比(批处理越多,压缩效果越好)。

batch.size=16384(16KB)

每当多个记录被发送到同一个分区时,生产者将尝试将记录批处理成更少的请求。这有助于提高客户端和服务器的性能。此配置控制以字节为单位的默认批处理大小。
不会尝试批处理大于此大小的记录。
发送到代理的请求将包含多个批,每个分区一个批,其中包含可发送的数据。
小批量会降低批处理的普遍性,并可能降低吞吐量(零批量会完全禁用批处理)。非常大的批处理大小可能会更加浪费内存,因为我们总是会分配指定批处理大小的缓冲区,以期待更多的记录。
注意:此设置提供要发送的批次大小的上限。如果我们为这个分区累积的字节少于这个数量,我们将“逗留”一段时间,等待更多记录出现。此linger.ms设置默认为0,这意味着即使累积的批量大小在此batch.size设置下,我们也会立即发送一条记录。

max.in.flight.requests.per.connection=5

这个参数指定了生产者在收到服务器响应(阻塞)之前可以向单个连接发送多少个消息批次。
请注意,如果此配置设置为大于1并且enable.idempotence设置为false,则由于重试(即,如果启用了重试)而导致发送失败后,存在消息重新排序的风险;如果禁用重试或enable.idempotence设置为true,则将保留排序。此外,启用幂等性要求该配置的值小于或等于5。如果设置了冲突的配置并且没有显式启用幂等性,则会禁用幂等性。

max.request.size=1048576(1MB)

请求的最大大小(以字节为单位)。此设置将限制生产者在单个请求中发送的记录批次数,以避免发送巨大的请求。这也是对最大未压缩记录批大小的有效限制。请注意,服务器对记录批大小有自己的上限(如果启用了压缩,则在压缩后),这可能与此不同。

receive.buffer.bytes=65536 (64KB)

TCP socket接收数据包缓冲区大小。如果值是-1,会使用操作系统默认值。

send.buffer.bytes=131072 (128KB)

TCP socket发送数据包缓冲区大小。如果值是-1,会使用操作系统默认值。

enable.idempotence=true

当设置为“true”时,生产者将确保在流中只写入每条消息的一个副本。如果为“false”,则由于代理失败等原因导致的生产者重试可能会在流中写入重试消息的副本。请注意,启用幂等性要求max.in.flight.requests.per-connection小于或等于5(为任何允许的值保留消息顺序),重试次数大于0,acks必须为“all”。
如果没有设置冲突的配置,默认情况下会启用幂等。如果设置了冲突的配置并且没有显式启用幂等性,则会禁用幂等性。如果显式启用了幂等性并设置了冲突的配置,则抛出ConfigException。

partitioner.class

确定在生成记录时将记录发送到哪个分区。可用选项包括:

  • 如果未设置,则使用默认分区逻辑。此策略将记录发送到同一个粘性分区,直到该分区产生至少batch.size字节为止。它与以下策略配合使用:
    1. 如果没有指定分区,但存在键,根据键的哈希值选择分区。
    2. 如果没有分区或键,在当前粘性分区中产生至少batch.size字节后,才会切换到下一个分区。
  • org.apache.kafka.clients.producer.internals.DefaultPartitioner
    不推荐设置,如果要使用默认分区逻辑,删除此配置项即可。
  • org.apache.kafka.clients.producer.RoundRobinPartitioner
    一种分区策略,一系列连续记录中的每个记录都被发送到不同的分区,无论是否提供了键,直到分区用完,过程重新开始。
  • org.apache.kafka.clients.producer.UniformStickyPartitioner
    不推荐设置,使用partitioner.ignore.keys=true配合默认分区策略可以达到相同的效果。
    1. 如果在记录中指定了分区,发送到指定分区
    2. 否则,在当前粘性分区中产生至少batch.size字节后,然后切换到下一个分区。注意:与DefaultPartitioner不同,记录键不作为此分区器中分区策略的一部分。具有相同密钥的记录不能保证发送到同一分区。

partitioner.ignore.keys=false

当设置为“true”时,生产者不会使用记录键来选择分区。如果为“false”,则生产者将在存在键时根据密钥的哈希来选择分区。注意:如果使用自定义分区器,则此设置无效。

interceptor.classes

要用作拦截器的类的列表。通过实现org.apache.kafka.clients.producer.ProducerInterceptor接口,您可以在生产者接收到的记录发布到kafka集群之前拦截(并可能改变)这些记录。默认情况下,没有拦截器。

2 发送时间相关配置

消息传递时间分布:
生产者发送消息总耗时

max.block.ms=60000 (1 minute)

配置控制KafkaProducer的发送消息方法的阻塞时间:send(), partitionsFor(), initTransactions(), sendOffsetsToTransaction(), commitTransaction() and abortTransaction()。对于send(),此超时限制了等待元数据获取和缓冲区分配的总时间(用户提供的序列化程序或分区程序中的阻塞不计入此超时)。对于partitionsFor(),此超时限制了在元数据不可用时等待元数据所花费的时间。与事务相关的方法总是阻塞,但如果无法发现事务协调器或在超时时间内没有响应,则可能会超时。

delivery.timeout.ms=120000 (2 minutes)

调用send()返回后报告成功或失败的时间上限。这限制了记录在发送之前延迟的总时间、等待来自代理的确认的时间(如果预期的话)以及允许重试发送失败的时间。如果遇到不可恢复的错误、重试次数已用完,或者记录被添加到提前到达交货到期截止日期的批中,则生产者可能会报告未能在该配置之前发送记录。此配置的值应大于或等于request.timeout.ms和linger.ms的总和

retries=2147483647

设置一个大于零的值将导致客户端重新发送任何发送失败并可能出现暂时错误的记录。请注意,此重试与客户端在收到错误后重新发送记录没有什么不同。如果delivery.timeout.ms配置的超时在确认成功之前首先过期,那么在重试次数用完之前,Produce请求将失败。用户通常应该不设置此配置,而是使用delivery.timeout.ms来控制重试行为。
启用幂等性要求此配置值大于0。如果设置了冲突的配置并且没有显式启用幂等性,则会禁用幂等性。
在将enable.idempotence设置为false和将max.in.flight.requests.per-connection设置为大于1时允许重试可能会更改记录的顺序,因为如果将两个批发送到单个分区,并且第一个批失败并重试,但第二个成功,则第二个批中的记录可能会首先出现。

retry.backoff.ms=100

尝试重试对给定主题分区的失败请求之前等待的时间。这避免了在某些失败场景下以紧密循环的方式重复发送请求。

request.timeout.ms=30000 (30 seconds)

配置控制客户端等待请求响应的最长时间。如果在超时之前没有收到响应,客户端将在必要时重新发送请求,或者在重试次数用完时使请求失败。

linger.ms

这个参数指定了生产者在发送消息批次之前等待更多消息加如批次的时间。通常情况下,只有当记录到达速度快于发送速度时,才会在加载时发生这种情况。然而,在某些情况下,即使在中等负载下,客户端也可能希望减少请求的数量。此设置通过添加少量人工延迟来实现这一点——也就是说,生产者将等待指定的延迟,以允许发送其他记录,从而可以将发送分批在一起,而不是立即发送记录。这可以被认为类似于TCP中的Nagle算法。此设置提供了批处理延迟的上限:一旦我们获得一个分区的batch.size大小的记录,无论此设置如何,它都将立即发送,但是,如果我们为该分区累积的字节数少于此数量,我们将“逗留”指定的时间,等待更多记录出现。此设置默认为0(即无延迟)。例如,设置linger.ms=5可以减少发送的请求数量,但在没有负载的情况下,发送记录的延迟将增加5ms。

3 创建生产者

	 Properties props = new Properties();
	 props.put("bootstrap.servers", "localhost:9092");
	 props.put("acks", "all");
	 props.put("delivery.timeout.ms", 30000);
	 props.put("batch.size", 16384);
	 props.put("linger.ms", 1);
	 props.put("buffer.memory", 33554432);
	 props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
	 props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
	
	 Producer<String, String> producer = new KafkaProducer<>(props);

4 发送消息到Kafka

发送消息有3种模式:

4.1 发送并忘记

把消息发送给broker,并不关心发送是否成功。

	ProducerRecord<String, String> record = new ProducerRecord<String, String>("my-topic", "key", "value");
	try {
	    producer.send(record);
	} catch (Exception e) {
	    logger.error("", e);
	}
	producer.flush();
	producer.close();

4.2 同步发送

	ProducerRecord<String, String> record = new ProducerRecord<String, String>("my-topic", "key", "value");
	try {
	    RecordMetadata metadata = producer.send(record).get();
	} catch (Exception e) {
	    logger.error("", e);
	}
	producer.close();

4.3 异步发送

        ProducerRecord<String, String> record = new ProducerRecord<>("my-topic", "key", "value");
        kafkaProducer.send(record, new Callback() {
            @Override
            public void onCompletion(RecordMetadata metadata, Exception exception) {
                if (null == exception) {

                } else {
                    logger.error("", exception);
                }
                kafkaProducer.close();
            }
        });

一般Producer会出现两种错误:

  • 可重试错误
    对于这种错误,producer会自动重试。例如网络连接错误。如果重试多次仍无法解决,可能会达到重试次数上限,抛出重试异常;或者达到请求超时时间,抛出超时异常。
  • 不可重试错误
    直接抛出异常。例如消息体超过大小限制。

5 序列化器

5.1 自定义序列化器

package com.qupeng.demo.kafka.kafkaapache.producer;

import org.apache.kafka.common.serialization.Serializer;

import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;

public class CustomizedSerializer implements Serializer<Product> {
    @Override
    public byte[] serialize(String topic, Product product) {
        byte[] name = product.getName().toString().getBytes(StandardCharsets.UTF_8);
        ByteBuffer buffer = ByteBuffer.allocate(4 + 4 + name.length);
        buffer.putInt(product.getId());
        buffer.putInt(name.length);
        buffer.put(name);
        return buffer.array();
    }
}

5.1 Avro序列化器

Avro是一种与语言无关的序列化格式,并使用schema来定义格式,用JSON来描述模式。因为Kafaka保存记录是不关心格式的,都作为二进制数组处理,所以Avro非常适合Kafka的客户端用来处理特定格式的消息。
使用Avro格式必须要注意:

  1. 格式遵循Avro的兼容性原则,用于新旧版本的兼容。
  2. 反序列化器需要获取写入数据时使用的模式。这就要求每一条记录都要携带模式,造成记录大小成倍增加。所以需要引入模式注册表,集中管理模式数据。
    Avro schema registry
        Properties props = new Properties();
        props.put("bootstrap.servers", "localhost:9092");
        props. put("key.serializer", "io.confluent.kafka.serializer.KafkaAvroSerializer");
        props.put("value.serializer", "io.confluent.kafka.serializer.KafkaAvroSerializer");
        props.put("schema.registry.url", "...");
        Producer<String, Product> producer = new KafkaProducer(props);
        while (true) {
            Product product = Product.newBuilder().build();
            ProducerRecord<String, Product> record = new ProducerRecord("product", product.getName(), product);
            producer.send(record);
        }
        Properties props = new Properties();
        props.put("bootstrap.servers", "localhost:9092");
        props. put("key.serializer", "io.confluent.kafka.serializer.KafkaAvroSerializer");
        props.put("value.serializer", "io.confluent.kafka.serializer.KafkaAvroSerializer");
        props.put("schema.registry.url", "...");
        Producer<String, GenericRecord> producer = new KafkaProducer(props);

        String schemaString = "{\n" +
                "  \"namespace\": \"com.qupeng.demo.kafka.kafkaspringbootproducer.avro\",\n" +
                "  \"type\": \"record\",\n" +
                "  \"name\": \"Product\",\n" +
                "  \"fields\": [\n" +
                "    {\n" +
                "      \"type\": \"int\",\n" +
                "      \"name\": \"id\",\n" +
                "      \"default\": 0\n" +
                "    },\n" +
                "    {\n" +
                "      \"type\": \"string\",\n" +
                "      \"name\": \"name\",\n" +
                "      \"default\": \"\"\n" +
                "    }\n" +
                "  ]\n" +
                "}";
        Schema.Parser parser = new Schema.Parser();
        Schema schema = parser.parse(schemaString);

        GenericRecord genericRecord = new GenericData.Record(schema);
        genericRecord.put("id", 0);
        genericRecord.put("name", "iPhone 17");

        ProducerRecord<String, GenericRecord> producerRecord = new ProducerRecord<>("product", "0", genericRecord);
        producer.send(producerRecord);

7 分区

由配置参数partitioner.class指定分区器类,除了内置分区器,还可以自定义分区器:

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;

import java.util.Map;
public class MyPartitioner implements Partitioner {
    @Override
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {

        String msgValue = value.toString();
        return msgValue.contains("0") ? 0 : 1;
    }

    @Override
    public void close() {

    }

    @Override
    public void configure(Map<String, ?> map) {

    }
}

7 拦截器

使用配置参数interceptor.classes指定拦截器类。

import org.apache.kafka.clients.producer.ProducerInterceptor;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.nio.charset.StandardCharsets;
import java.util.Map;
import java.util.UUID;

public class MyProducerInterceptor implements ProducerInterceptor {

    private Logger logger = LoggerFactory.getLogger(MyProducerInterceptor.class);

    @Override
    public ProducerRecord onSend(ProducerRecord record) {
        record.headers().add("correlationId", UUID.randomUUID().toString().getBytes(StandardCharsets.UTF_8));
        return record;
    }

    @Override
    public void onAcknowledgement(RecordMetadata metadata, Exception exception) {
        logger.info(metadata.toString());
    }

    @Override
    public void close() {

    }

    @Override
    public void configure(Map<String, ?> configs) {

    }
}

8 配额和节流

覆盖默认配置的选项在3.0版本之后已经删除,只能使用动态配置来修改。
quota.producer.default=10485760
quota.consumer.default=10485760

# 用命令动态修改配额
kafka-configs.sh --bootstrap-server "172.26.143.96:9092" --alter --add-config 'producer_byte_rate=1024, consumer_byte_rate=2048' --entity-type clients --entity-name rest-api-1

# 用命令查看配额
kafka-configs.sh --bootstrap-server "172.26.143.96:9092" --describe --entity-type clients --entity-name rest-api-1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1365200.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Fowsniff

靶场搭建 遇到扫描不到的情况&#xff0c;可以尝试改靶机的网络为NAT模式&#xff0c;在靶机启动时按”esc“&#xff0c;进入Advanced options for Ubantu&#xff0c;选择recovery mode&#xff0c;选择network&#xff0c;按方向键”→“&#xff0c;OK&#xff0c;然后res…

Python爬虫获取百度的图片

一. 爬虫的方式&#xff1a; 主要有2种方式: ①ScrapyXpath (API 静态 爬取-直接post get) ②seleniumXpath (点击 动态 爬取-模拟) ScrapyXpath XPath 是 Scrapy 中常用的一种解析器&#xff0c;可以帮助爬虫定位和提取 HTML 或 XML 文档中的数据。 Scrapy 中使用 …

VMware NAT 模式,网关无法ping通 网关解决办法

开启红框服务即可。。 参考&#xff1a;VMware NAT 模式&#xff0c;网关无法ping通 网关解决办法_vmware设置net,本机ping不通网关-CSDN博客

【代码】Keras3.0:实现残差连接

简介 残差连接是一种非常重要的网络结构创新&#xff0c;最早被广泛应用于ResNet&#xff08;Residual Neural Network&#xff09;模型中&#xff0c;由何凯明等人在2015年的论文"Deep Residual Learning for Image Recognition"中提出。 核心思想 通过引入“short…

【Sharding-Sphere 整合SpringBoot】

Sharding-Jdbc在3.0后改名为Sharding-Sphere。Sharding-Sphere相关资料&#xff0c;请自行网上查阅&#xff0c;这里仅仅介绍了实战相关内容&#xff0c;算是抛砖引玉。 Sharding-Sphere 整合SpringBoot 一、项目准备二、项目实战1. pom.xml及application.yml2. OrderInfoCont…

大数据 Yarn - 资源调度框架

Hadoop主要是由三部分组成&#xff0c;除了前面我讲过的分布式文件系统HDFS、分布式计算框架MapReduce&#xff0c;还有一个是分布式集群资源调度框架Yarn。 但是Yarn并不是随Hadoop的推出一开始就有的&#xff0c;Yarn作为分布式集群的资源调度框架&#xff0c;它的出现伴随着…

Mac M1 Parallels CentOS7.9 Deploy Docker + Rancher + K8S(HA+More Master)

一、准备虚拟机资源 虚拟机清单 机器名称IP地址角色rancher10.211.55.200管理K8S集群k8svip10.211.55.199K8S VIPmaster0110.211.55.201K8S集群主节点master0210.211.55.202K8S集群主节点master0310.211.55.203K8S集群主节点node0110.211.55.211K8S集群从节点node0210.211.55…

nvm安装教程,实现node的多版本管理(图文界面)

目录 前言1. 安装配置2. 使用方式 前言 由于前端项目不同的node版本&#xff0c;导致重复的卸载安装会比较麻烦&#xff0c;对此需要nvm来管理 类似python版本的差异&#xff0c;可以使用虚拟环境管理&#xff08;anconda&#xff09;&#xff0c;在我原先的文章也有讲解过 …

Hive精选10道面试题

1.Hive内部表和外部表的区别&#xff1f; 内部表的数据由Hive管理&#xff0c;外部表的数据不由Hive管理。 在Hive中删除内部表后&#xff0c;不仅会删除元数据还会删除存储数据&#xff0c; 在Hive中删除外部表后&#xff0c;只会删除元数据但不会删除存储数据。 内部表一旦…

Basal前端梳理

Basalt前端逻辑梳理 TBB安装参考 https://zhuanlan.zhihu.com/p/480823197 代码注释参考 https://blog.csdn.net/qq_39266065/article/details/106175701#t7 光流追踪参考 https://blog.csdn.net/weixin_41738773/article/details/130282527 VI Odometry KLT tracking 原理 …

new和delete表达式的工作步骤

new表达式工作步骤 调用一个operator new库函数开辟未类型化的空间 void *operator new(size_t); 在为类型化的空间上调用构造函数&#xff0c;初始化对象的成员 返回相应类型的指针 delete表达式工作步骤 调用相应类型的析构函数,但析构函数并不能删除对象所在的空间&…

【linux学习笔记】网络

目录 【linux学习笔记】网络检查、监测网络ping-向网络主机发送特殊数据包traceroute-跟踪网络数据包的传输路径netstat-检查网络设置及相关统计数据 【linux学习笔记】网络 检查、监测网络 ping-向网络主机发送特殊数据包 最基本的网络连接命令就是ping命令。ping命令会向指…

062:vue中将一维数组变换为三维数组(图文示例)

第062个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下&#xff0c;本专栏提供行之有效的源代码示例和信息点介绍&#xff0c;做到灵活运用。 &#xff08;1&#xff09;提供vue2的一些基本操作&#xff1a;安装、引用&#xff0c;模板使…

Leetcode2487. 从链表中移除节点

Every day a Leetcode 题目来源&#xff1a;2487. 从链表中移除节点 解法1&#xff1a;单调栈 遍历链表&#xff0c;建立一个单调栈&#xff08;单调递减&#xff09;。 再用头插法将单调栈的元素建立一个新的链表&#xff0c;返回该链表的头结点。 代码&#xff1a; /*…

计算机基础面试题 |16.精选计算机基础面试题

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

how2heap-2.23-11-poison_null_byte

什么是poison_null_byte 当然不止这一种&#xff0c;下面最简单的形式 #include <malloc.h> int main() {char * a malloc(0x200);char * b malloc(0x200);size_t real_size malloc_usable_size(a);a[real_size] 0;return 0; }影响&#xff1a; chunk a&#xff0…

【Hadoop】说下HDFS读文件和写文件的底层原理?

文件读取文件的写入 文件读取 客户端调用 FileSystem 对象的 open&#xff08;&#xff09;函数&#xff0c;打开想要读取的文件。其中FileSystem 是 DistributeFileSystem 的一个实例&#xff1b;DistributedFileSystem 通过使用 RPC&#xff08;远程过程调用&#xff09; 访N…

Large Language Models Paper 分享

论文1&#xff1a; ChatGPTs One-year Anniversary: Are Open-Source Large Language Models Catching up? 简介 2022年11月&#xff0c;OpenAI发布了ChatGPT&#xff0c;这一事件在AI社区甚至全世界引起了轰动。首次&#xff0c;一个基于应用的AI聊天机器人能够提供有帮助、…

vue3组件传参

1、props: 2、自定义事件子传父 3、mitt任意组件通讯 4、v-model通讯(v-model绑定在组件上) (1)V2中父子组件的v-model通信&#xff0c;限制了popos接收的属性名必须为value和emit触发的事件名必须为input,所以有时会有冲突; 父组件: 子组件: (2)V3中:限制了popos接收的属性名…

读元宇宙改变一切笔记02_元素(上)

1. 很多组织和机构都想在元宇宙的定义上掌握话语权&#xff0c;使得它的定义中存在矛盾之处&#xff0c;也有大量含义混淆之处 1.1. 微软 1.1.1. 在谈论“多个元宇宙” 1.1.2. 微软首席执行官萨提亚纳德拉将元宇宙描述为一种可以将“整个…