Large Language Models Paper 分享

news2024/11/15 13:50:40

论文1: ChatGPT's One-year Anniversary: Are Open-Source Large Language Models Catching up?

简介

2022年11月,OpenAI发布了ChatGPT,这一事件在AI社区甚至全世界引起了轰动。首次,一个基于应用的AI聊天机器人能够提供有帮助、安全和有用的答案,遵循人类指令,甚至承认并纠正之前的错误。作为第一个这样的应用,ChatGPT在其推出仅两个月内,用户数量就达到了1亿,远远快于其他流行应用如TikTok或YouTube。因此,它也吸引了巨额的商业投资,因为它有望降低劳动成本,自动化工作流程,甚至为客户带来新的体验。

但ChatGPT的闭源特性可能引发诸多问题。首先,由于不了解内部细节,比如预训练和微调过程,很难正确评估其潜在风险,尤其是考虑到大模型可能生成有害、不道德和虚假的内容。其次,有报道称ChatGPT的性能随时间变化,妨碍了可重复的结果。第三,ChatGPT经历了多次故障,仅在2023年11月就发生了两次重大故障,期间无法访问ChatGPT网站及其API。最后,采用ChatGPT的企业可能会关注API调用的高成本、服务中断、数据所有权和隐私问题,以及其他不可预测的事件,比如最近有关CEO Sam Altman被解雇并最终回归的董事会闹剧。

此时,开源大模型应运而生,社区一直在积极推动将高性能的大模型保持开源。然而,截至2023年末,大家还普遍认为类似Llama-2或Falcon这样的开源大模型在性能上落后于它们的闭源模型,如OpenAI的GPT3.5(ChatGPT)和GPT-4,Anthropic的Claude2或Google的Bard3,其中GPT-4通常被认为是最出色的。然而,令人鼓舞的是差距正在变得越来越小,开源大模型正在迅速赶上。

地址:[2311.16989] ChatGPT's One-year Anniversary: Are Open-Source Large Language Models Catching up? (arxiv.org)

更有趣的 AI Agent

  • Generative Agents: Interactive Simulacra of Human Behavior https://arxiv.org/abs/2304.03442

  • RoleLLM: Benchmarking, Eliciting, and Enhancing Role-Playing Abilities of Large Language Models https://arxiv.org/abs/2310.00746

  • Role play with large language models https://www.nature.com/articles/s41586-023-06647-8

  • Exploring Large Language Models for Communication Games: An Empirical Study on Werewolf https://arxiv.org/abs/2309.04658

  • MemGPT: Towards LLMs as Operating Systems https://arxiv.org/abs/2310.08560

  • Augmenting Language Models with Long-Term Memory https://arxiv.org/abs/2306.07174

  • Do LLMs Possess a Personality? Making the MBTI Test an Amazing Evaluation for Large Language Models https://arxiv.org/pdf/2307.16180.pdf

更有用的 AI Agent

  • The Rise and Potential of Large Language Model Based Agents: A Survey https://arxiv.org/abs/2309.07864

  • MetaGPT: Meta Programming for A Multi-Agent Collaborative Framework https://arxiv.org/abs/2308.00352

  • Communicative Agents for Software Development https://arxiv.org/pdf/2307.07924.pdf

  • Large Language Models Can Self-Improve https://arxiv.org/abs/2210.11610

  • Evaluating Human-Language Model Interaction https://arxiv.org/abs/2212.09746

  • Large Language Models can Learn Rules https://arxiv.org/abs/2310.07064

  • AgentBench: Evaluating LLMs as Agents https://arxiv.org/abs/2308.03688

  • WebArena: A Realistic Web Environment for Building Autonomous Agents https://arxiv.org/abs/2307.13854

  • TableGPT: Towards Unifying Tables, Nature Language and Commands into One GPT https://arxiv.org/abs/2307.08674

任务规划与分解

  • Chain-of-Thought Prompting Elicits Reasoning in Large Language Models https://arxiv.org/abs/2201.11903

  • Tree of Thoughts: Deliberate Problem Solving with Large Language Models https://arxiv.org/abs/2305.10601

  • Implicit Chain of Thought Reasoning via Knowledge Distillation https://arxiv.org/abs/2311.01460

  • ReAct: Synergizing Reasoning and Acting in Language Models https://arxiv.org/abs/2210.03629

  • ART: Automatic multi-step reasoning and tool-use for large language models https://arxiv.org/abs/2303.09014

  • Branch-Solve-Merge Improves Large Language Model Evaluation and Generation https://arxiv.org/abs/2310.15123

  • WizardLM: Empowering Large Language Models to Follow Complex Instructionshttps://arxiv.org/pdf/2304.12244.pdf

幻觉

  • Siren’s Song in the AI Ocean: A Survey on Hallucination in Large Language Modelshttps://arxiv.org/pdf/2309.01219.pdf

  • Check Your Facts and Try Again: Improving Large Language Models with External Knowledge and Automated Feedback https://arxiv.org/abs/2302.12813

  • SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models https://arxiv.org/abs/2303.08896

  • WebBrain: Learning to Generate Factually Correct Articles for Queries by Grounding on Large Web Corpus https://arxiv.org/abs/2304.04358

多模态

  • Learning Transferable Visual Models From Natural Language Supervision (CLIP) https://arxiv.org/abs/2103.00020

  • An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (ViT): https://arxiv.org/abs/2010.11929

  • MiniGPT-v2: large language model as a unified interface for vision-language multi-task learninghttps://arxiv.org/abs/2310.09478

  • MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language Models https://arxiv.org/abs/2304.10592

  • NExT-GPT: Any-to-Any Multimodal LLM https://arxiv.org/pdf/2309.05519.pdf

  • Visual Instruction Tuning (LLaVA) https://arxiv.org/pdf/2304.08485.pdf

  • Improved Baselines with Visual Instruction Tuning (LLaVA-1.5) https://arxiv.org/abs/2310.03744

  • Sequential Modeling Enables Scalable Learning for Large Vision Models (LVM) https://arxiv.org/pdf/2312.00785.pdf

  • CoDi-2: In-Context, Interleaved, and Interactive Any-to-Any Generation https://arxiv.org/pdf/2311.18775.pdf

  • Neural Discrete Representation Learning (VQ-VAE) https://browse.arxiv.org/pdf/1711.00937.pdf

  • Taming Transformers for High-Resolution Image Synthesis (VQ-GAN) https://arxiv.org/abs/2012.09841

  • Swin Transformer: Hierarchical Vision Transformer using Shifted Windows https://arxiv.org/abs/2103.14030

  • BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models https://browse.arxiv.org/pdf/2301.12597.pdf

  • InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning https://browse.arxiv.org/pdf/2305.06500.pdf

  • ImageBind: One Embedding Space To Bind Them All https://arxiv.org/abs/2305.05665

  • Meta-Transformer: A Unified Framework for Multimodal Learning https://arxiv.org/abs/2307.10802

图片/视频生成

  • High-Resolution Image Synthesis with Latent Diffusion Models https://arxiv.org/pdf/2112.10752.pdf

  • Structure and Content-Guided Video Synthesis with Diffusion Models (RunwayML Gen1) https://browse.arxiv.org/pdf/2302.03011.pdf

  • Hierarchical Text-Conditional Image Generation with CLIP Latents (DaLLE-2) https://arxiv.org/pdf/2204.06125.pdf

  • AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning https://arxiv.org/abs/2307.04725

  • Adding Conditional Control to Text-to-Image Diffusion Models (ControlNet) https://arxiv.org/abs/2302.05543

  • SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesishttps://arxiv.org/abs/2307.01952

  • Zero-1-to-3: Zero-shot One Image to 3D Object https://arxiv.org/abs/2303.11328

  • Scaling Vision Transformers to 22 Billion Parameters https://arxiv.org/abs/2302.05442

  • Glow: Generative Flow with Invertible 1×1 Convolutions https://browse.arxiv.org/pdf/1807.03039.pdf

  • Language Model Beats Diffusion – Tokenizer is Key to Visual Generation https://arxiv.org/pdf/2310.05737.pdf

  • InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generationhttps://arxiv.org/pdf/2309.06380.pdf

  • Perceptual Losses for Real-Time Style Transfer and Super-Resolution https://arxiv.org/pdf/1603.08155.pdf

  • CogView: Mastering Text-to-Image Generation via Transformers https://arxiv.org/abs/2105.13290

  • Diffusion Models for Video Prediction and Infilling https://arxiv.org/abs/2206.07696

语音合成

  • Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech (VITS)https://browse.arxiv.org/pdf/2106.06103.pdf

  • Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers (VALL-E)https://arxiv.org/abs/2301.02111

  • Speak Foreign Languages with Your Own Voice: Cross-Lingual Neural Codec Language Modeling (VALL-E X) https://arxiv.org/pdf/2303.03926.pdf

  • MusicLM: Generating Music From Text https://arxiv.org/abs/2301.11325

大模型基础

  • Attention Is All You Need https://arxiv.org/abs/1706.03762

  • Sequence to Sequence Learning with Neural Networks https://arxiv.org/abs/1409.3215

  • Neural Machine Translation by Jointly Learning to Align and Translate https://arxiv.org/abs/1409.0473

  • BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding https://arxiv.org/abs/1810.04805

  • Scaling Laws for Neural Language Models https://arxiv.org/pdf/2001.08361.pdf

  • Emergent Abilities of Large Language Models https://openreview.net/pdf?id=yzkSU5zdwD

  • Training Compute-Optimal Large Language Models (ChinChilla scaling law) https://arxiv.org/abs/2203.15556

  • Scaling Instruction-Finetuned Language Models https://arxiv.org/pdf/2210.11416.pdf

  • Direct Preference Optimization:

  • Your Language Model is Secretly a Reward Model https://arxiv.org/pdf/2305.18290.pdf

  • Progress measures for grokking via mechanistic interpretability https://arxiv.org/abs/2301.05217

  • Language Models Represent Space and Time https://arxiv.org/abs/2310.02207

  • GLaM: Efficient Scaling of Language Models with Mixture-of-Experts https://arxiv.org/abs/2112.06905

  • Adam: A Method for Stochastic Optimization https://arxiv.org/abs/1412.6980

  • Efficient Estimation of Word Representations in Vector Space (Word2Vec) https://arxiv.org/abs/1301.3781

  • Distributed Representations of Words and Phrases and their Compositionality https://arxiv.org/abs/1310.4546

GPT

  • Language Models are Few-Shot Learners (GPT-3) https://arxiv.org/abs/2005.14165

  • Language Models are Unsupervised Multitask Learners (GPT-2) https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

  • Improving Language Understanding by Generative Pre-Training (GPT-1) https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

  • Training language models to follow instructions with human feedback (InstructGPT)https://arxiv.org/pdf/2203.02155.pdf

  • Evaluating Large Language Models Trained on Code https://arxiv.org/pdf/2107.03374.pdf

  • Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond https://arxiv.org/abs/2304.13712

  • Instruction Tuning with GPT-4 https://arxiv.org/pdf/2304.03277.pdf

  • The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision) https://arxiv.org/abs/2309.17421

  • Sparks of Artificial General Intelligence: Early experiments with GPT-4 https://arxiv.org/abs/2303.12712

  • Weak-to-Strong Generalization: Eliciting Strong Capabilities With Weak Supervision https://arxiv.org/abs/2312.09390

开源大模型

  • LLaMA: Open and Efficient Foundation Language Models https://arxiv.org/abs/2302.13971

  • Llama 2: Open Foundation and Fine-Tuned Chat Models https://arxiv.org/pdf/2307.09288.pdf

  • Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality https://lmsys.org/blog/2023-03-30-vicuna/

  • LMSYS-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset https://arxiv.org/abs/2309.11998

  • Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena https://arxiv.org/abs/2306.05685

  • How Long Can Open-Source LLMs Truly Promise on Context Length? https://lmsys.org/blog/2023-06-29-longchat/

  • Mixtral of experts https://mistral.ai/news/mixtral-of-experts/

  • OpenChat: Advancing Open-source Language Models with Mixed-Quality Data https://arxiv.org/abs/2309.11235

  • RWKV: Reinventing RNNs for the Transformer Era https://arxiv.org/abs/2305.13048

  • Mamba: Linear-Time Sequence Modeling with Selective State Spaces https://arxiv.org/ftp/arxiv/papers/2312/2312.00752.pdf

  • Retentive Network: A Successor to Transformer for Large Language Models https://arxiv.org/abs/2307.08621

  • Baichuan 2: Open Large-scale Language Models https://arxiv.org/abs/2309.10305

  • GLM-130B: An Open Bilingual Pre-trained Model https://arxiv.org/abs/2210.02414

  • Qwen Technical Report https://arxiv.org/abs/2309.16609

  • Skywork: A More Open Bilingual Foundation Model https://arxiv.org/abs/2310.19341

微调

  • Learning to summarize from human feedback https://arxiv.org/abs/2009.01325

  • Self-Instruct: Aligning Language Model with Self Generated Instruction https://arxiv.org/abs/2212.10560

  • Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning https://arxiv.org/abs/2303.15647

  • LoRA: Low-Rank Adaptation of Large Language Models https://arxiv.org/abs/2106.09685

  • Vera: Vector-Based Random Matrix Adapation https://arxiv.org/pdf/2310.11454.pdf

  • QLoRA: Efficient Finetuning of Quantized LLMs https://arxiv.org/abs/2305.14314

  • Chain of Hindsight Aligns Language Models with Feedback https://arxiv.org/abs/2302.02676

  • Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models https://arxiv.org/pdf/2312.06585.pdf

性能优化

  • Efficient Memory Management for Large Language Model Serving with PagedAttention (vLLM) https://arxiv.org/abs/2309.06180

  • FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness https://arxiv.org/abs/2205.14135

  • S-LoRA: Serving Thousands of Concurrent LoRA Adapters https://arxiv.org/abs/2311.03285

  • GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism https://proceedings.neurips.cc/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf

  • Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism https://arxiv.org/pdf/1909.08053.pdf

  • ZeRO: Memory Optimizations Toward Training Trillion Parameter Models https://arxiv.org/pdf/1910.02054.pdf

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1365175.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue3组件传参

1、props: 2、自定义事件子传父 3、mitt任意组件通讯 4、v-model通讯(v-model绑定在组件上) (1)V2中父子组件的v-model通信,限制了popos接收的属性名必须为value和emit触发的事件名必须为input,所以有时会有冲突; 父组件: 子组件: (2)V3中:限制了popos接收的属性名…

读元宇宙改变一切笔记02_元素(上)

1. 很多组织和机构都想在元宇宙的定义上掌握话语权,使得它的定义中存在矛盾之处,也有大量含义混淆之处 1.1. 微软 1.1.1. 在谈论“多个元宇宙” 1.1.2. 微软首席执行官萨提亚纳德拉将元宇宙描述为一种可以将“整个…

Dockerfile的ENV

文章目录 环境总结测试测试1测试2测试3测试4测试5测试6 参考 环境 RHEL 9.3Docker Community 24.0.7 总结 如果懒得看测试的详细信息,可以直接看结果: 一条 ENV 指令可以定义多个环境变量。Dockerfile里可以包含多条 ENV 指令。环境变量的值不需要用…

(低级错误)IDEA/Goland报错连接数据库失败:URL错误和权限问题。

前言 做毕设ing,使用Goland自带的数据库工具连接服务器的数据库。报错 错误: Malformed database URL, failed to parse the main URL sections. (view)服务器是华为云,使用宝塔面板。数据库版本5.6.50。 排查过程 鉴于Goland报错报的狗屁不是&#…

H266/VVC率失真优化与速率控制概述

率失真优化技术 率失真优化: 视频编码的主要目的是在保证一定视频质量的条件下尽量降低视频的编码比特率,或者在一定编码比特率限制条件下尽量地减小编码失真。在固定的编码框架下,为了应对不同的视频内容,往往有多种候选的编码方…

YOLOv5改进 | 损失函数篇 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数

一、本文介绍 这篇文章介绍了YOLOv5的重大改进,特别是在损失函数方面的创新。它不仅包括了多种IoU损失函数的改进和变体,如SIoU、WIoU、GIoU、DIoU、EIOU、CIoU,还融合了“Focus”思想,创造了一系列新的损失函数。这些组合形式的损失函数超过了二十余种,每种都针对特定的…

万界星空科技商业开源MES主要功能介绍

一、系统概述: MES制造执行系统,其定位于制造执行系统的Java开源版本。系统包括系统管理,车间基础数据建模,计划管理,物料控制,生产执行,质量管理,库存管理,看板管理&am…

System学习笔记 - MacOs编译环境配置(一)

前言 好几年没有记录过东西,一是确实很忙,二是人也变懒了。新年开个新的学习计划,希望能坚持下去。 SystemC 简介 SystemC是一个建模语言,其本质是一个C的库,一般用于SoC建模,具体介绍不赘述&#xff0…

GPDB - 高可用 - 流复制状态

GPDB - 高可用 - 流复制状态 GPDB的高可用基于流复制,通过FTS进行自动故障切换。自动故障切换需要根据primary-mirror流复制的各种状态进行判断。本节就聊聊primary-mirror流复制的各种状态。同样适用于PgSQL 1、WalSndState typedef enum WalSndState {WALSNDSTATE…

为什么 Kafka 这么快?它是如何工作的?

随着数据以指数级的速度流入企业,强大且高性能的消息传递系统至关重要。Apache Kafka 因其速度和可扩展性而成为热门选择,但究竟是什么让它如此之快? 在本期中,我们将探讨: Kafka 的架构及其核心组件,如生…

如何编写高效的正则表达式?

正则表达式(Regular Expression,简称regex)是一种强大的文本处理技术,广泛应用于各种编程语言和工具中。本文将从多个方面介绍正则表达式的原理、应用和实践,帮助你掌握这一关键技术。 正则可视化 | 一个覆盖广泛主题…

嵌入式(六)模数转换ADC | ADC 工作模式 寄存器 轮询和中断方式

文章目录 1 CC2530的ADC模块2 ADC工作模式3 ADC相关寄存器3.1数据寄存器3.2 控制寄存器 4 ADC初始化配置5 ADC使用方式5.1 轮询方式5.2 中断方式 模拟/数字转换 (Analog to Digital Converter,简称ADC) 是将输入的模拟信号转换为数字信号。 各种被测控的物理量&…

基于SSM的企业员工管理系统

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…

PIG框架学习2——资源服务器的配置详解

一、前言 1、pig资源服务器的配置 Spring Security oauth2相关的依赖是在pigx-common-security模块中引入的,其他模块需要进行token鉴权的,需要在微服务中引入pigx-common-security模块的依赖,从而间接引入相关的Spring security oauth2依赖…

YOLOv5改进 | 损失函数篇 | MPDIoU、InnerMPDIoU助力细节涨点

一、本文介绍 本文为读者详细介绍了YOLOv5模型的最新改进,带来的改进机制是最新的损失函数MPDIoU和融合了最新的Inner思想的InnerMPDIoU。提升检测精度和处理细节方面的作用。通过深入探讨MPDIoU和InnerMPDIoU(全网首发)的工作原理和实际代码实现,本文旨在指导读者如何将这些…

[文件I/O操作] 文件的介绍

目录 1.认识文件 2.树型组织结构和目录 3.文件路径 4.文件类型 5.用Java代码操作文件 5.1 File概述 5.2代码实例 5.2.1观察get系列代码的差异 ​编辑 5.3.2普通文件的创建、删除 ​编辑 5.3.3普通文件的删除 ​编辑 5.3.4观察目录的创建 ​编辑 5.3.5 观察文件重…

【SpringBoot】事务管理

1. 事务管理的概念 事务是一组操作的集合,它是一个不可分割的工作单位。事务会把所有的操作作为一个整体,一起向数据库提交或者是撤销操作请求。所以这组操作要么同时成功,要么同时失败。 事务的操作主要有三步: 开启事务&…

逆置算法和数组循环移动算法

元素逆置 概述:其实就是将 第一个元素和最后一个元素交换,第二个元素和倒数第二个元素交换,依次到中间位置。用途:可用于数组的移动,字符串反转,链表反转操作,栈和队列反转等操作。 逆置图解 …

Javaweb之Mybatis的XML配置文件的详细解析

2. Mybatis的XML配置文件 Mybatis的开发有两种方式: 注解 XML 2.1 XML配置文件规范 使用Mybatis的注解方式,主要是来完成一些简单的增删改查功能。如果需要实现复杂的SQL功能,建议使用XML来配置映射语句,也就是将SQL语句写在…

陆地探测一号01组(L波段差分干涉SAR)卫星

1. 卫星简介 陆地探测一号01组A/B卫星(LT-1A/1B)先后于2022年1月26日、2月27日在酒泉卫星发射中心成功发射,又被称为L波段差分干涉SAR卫星,是《国家民用空间基础设施中长期发展规划(2015-2025年)》中首个科…