秋招复习之堆

news2024/11/16 2:50:23

目录

前言

堆的常用操作

堆的实现(大根堆)

1.   堆的存储与表示

2.   访问堆顶元素

3.   元素入堆

4.   堆顶元素出堆

Top-k 问题

方法一:遍历选择

方法二:排序

方法三:堆

总结


前言

秋招复习之堆。


「堆 heap」是一种满足特定条件的完全二叉树,主要可分为两种类型,如图所示。

  • 「小顶堆 min heap」:任意节点的值 ≤ 其子节点的值。
  • 「大顶堆 max heap」:任意节点的值 ≥ 其子节点的值。

堆作为完全二叉树的一个特例,具有以下特性。

  • 最底层节点靠左填充其他层的节点都被填满
  • 我们将二叉树的根节点称为“堆顶”,将底层最靠右的节点称为“堆底”。
  • 对于大顶堆(小顶堆),堆顶元素(根节点)的值是最大(最小)的。

堆的常用操作

许多编程语言提供的是「优先队列 priority queue」,这是一种抽象的数据结构,定义为具有优先级排序的队列。

实际上,堆通常用于实现优先队列,大顶堆相当于元素按从大到小的顺序出队的优先队列。从使用角度来看,我们可以将“优先队列”和“堆”看作等价的数据结构。

在实际应用中,我们可以直接使用编程语言提供的堆类(或优先队列类)。

类似于排序算法中的“从小到大排列”和“从大到小排列”,我们可以通过设置一个 flag 或修改 Comparator 实现“小顶堆”与“大顶堆”之间的转换。代码如下所示:

/* 初始化堆 */
// 初始化小顶堆
Queue<Integer> minHeap = new PriorityQueue<>();
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
Queue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a);

/* 元素入堆 */
maxHeap.offer(1);
maxHeap.offer(3);
maxHeap.offer(2);
maxHeap.offer(5);
maxHeap.offer(4);

/* 获取堆顶元素 */
int peek = maxHeap.peek(); // 5

/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
peek = maxHeap.poll(); // 5
peek = maxHeap.poll(); // 4
peek = maxHeap.poll(); // 3
peek = maxHeap.poll(); // 2
peek = maxHeap.poll(); // 1

/* 获取堆大小 */
int size = maxHeap.size();

/* 判断堆是否为空 */
boolean isEmpty = maxHeap.isEmpty();

/* 输入列表并建堆 */
minHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));
/* 初始化堆 */
// 初始化小顶堆
priority_queue<int, vector<int>, greater<int>> minHeap;
// 初始化大顶堆
priority_queue<int, vector<int>, less<int>> maxHeap;

/* 元素入堆 */
maxHeap.push(1);
maxHeap.push(3);
maxHeap.push(2);
maxHeap.push(5);
maxHeap.push(4);

/* 获取堆顶元素 */
int peek = maxHeap.top(); // 5

/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
maxHeap.pop(); // 5
maxHeap.pop(); // 4
maxHeap.pop(); // 3
maxHeap.pop(); // 2
maxHeap.pop(); // 1

/* 获取堆大小 */
int size = maxHeap.size();

/* 判断堆是否为空 */
bool isEmpty = maxHeap.empty();

/* 输入列表并建堆 */
vector<int> input{1, 3, 2, 5, 4};
priority_queue<int, vector<int>, greater<int>> minHeap(input.begin(), input.end());

堆的实现(大根堆)

1.   堆的存储与表示

完全二叉树非常适合用数组来表示。由于堆正是一种完全二叉树,因此我们将采用数组来存储堆

 将索引映射公式封装成函数

/* 获取左子节点的索引 */
int left(int i) {
    return 2 * i + 1;
}

/* 获取右子节点的索引 */
int right(int i) {
    return 2 * i + 2;
}

/* 获取父节点的索引 */
int parent(int i) {
    return (i - 1) / 2; // 向下整除
}
/* 获取左子节点的索引 */
int left(int i) {
    return 2 * i + 1;
}

/* 获取右子节点的索引 */
int right(int i) {
    return 2 * i + 2;
}

/* 获取父节点的索引 */
int parent(int i) {
    return (i - 1) / 2; // 向下整除
}

2.   访问堆顶元素

/* 访问堆顶元素 */
int peek() {
    return maxHeap.get(0);
}
/* 访问堆顶元素 */
int peek() {
    return maxHeap[0];
}

3.   元素入堆

给定元素 val ,我们首先将其添加到堆底。添加之后,由于 val 可能大于堆中其他元素,堆的成立条件可能已被破坏,因此需要修复从插入节点到根节点的路径上的各个节点,这个操作被称为「堆化 heapify」。

考虑从入堆节点开始,从底至顶执行堆化。如图所示,我们比较插入节点与其父节点的值,如果插入节点更大,则将它们交换。然后继续执行此操作,从底至顶修复堆中的各个节点,直至越过根节点或遇到无须交换的节点时结束。(就是一直和父比较,大就换)

设节点总数为 n ,则树的高度为 O(log⁡N) 。由此可知,堆化操作的循环轮数最多为  O(log⁡N) ,元素入堆操作的时间复杂度为  O(log⁡N) 。

/* 元素入堆 */
void push(int val) {
    // 添加节点
    maxHeap.add(val);
    // 从底至顶堆化
    siftUp(size() - 1);
}

/* 从节点 i 开始,从底至顶堆化 */
void siftUp(int i) {
    while (true) {
        // 获取节点 i 的父节点
        int p = parent(i);
        // 当“越过根节点”或“节点无须修复”时,结束堆化
        if (p < 0 || maxHeap.get(i) <= maxHeap.get(p))
            break;
        // 交换两节点
        swap(i, p);
        // 循环向上堆化
        i = p;
    }
}
/* 元素入堆 */
void push(int val) {
    // 添加节点
    maxHeap.push_back(val);
    // 从底至顶堆化
    siftUp(size() - 1);
}

/* 从节点 i 开始,从底至顶堆化 */
void siftUp(int i) {
    while (true) {
        // 获取节点 i 的父节点
        int p = parent(i);
        // 当“越过根节点”或“节点无须修复”时,结束堆化
        if (p < 0 || maxHeap[i] <= maxHeap[p])
            break;
        // 交换两节点
        swap(maxHeap[i], maxHeap[p]);
        // 循环向上堆化
        i = p;
    }
}

4.   堆顶元素出堆

堆顶元素是二叉树的根节点,即列表首元素。如果我们直接从列表中删除首元素,那么二叉树中所有节点的索引都会发生变化,这将使得后续使用堆化进行修复变得困难。为了尽量减少元素索引的变动,我们采用以下操作步骤。

  1. 交换堆顶元素与堆底元素(交换根节点与最右叶节点)。
  2. 交换完成后,将堆底从列表中删除(注意,由于已经交换,因此实际上删除的是原来的堆顶元素)。
  3. 从根节点开始,从顶至底执行堆化

如图所示,“从顶至底堆化”的操作方向与“从底至顶堆化”相反,我们将根节点的值与其两个子节点的值进行比较,将最大的子节点与根节点交换。然后循环执行此操作,直到越过叶节点或遇到无须交换的节点时结束。

与元素入堆操作相似,堆顶元素出堆操作的时间复杂度也为 O(log⁡n) 。代码如下所示:

/* 元素出堆 */
int pop() {
    // 判空处理
    if (isEmpty())
        throw new IndexOutOfBoundsException();
    // 交换根节点与最右叶节点(交换首元素与尾元素)
    swap(0, size() - 1);
    // 删除节点
    int val = maxHeap.remove(size() - 1);
    // 从顶至底堆化
    siftDown(0);
    // 返回堆顶元素
    return val;
}

/* 从节点 i 开始,从顶至底堆化 */
void siftDown(int i) {
    while (true) {
        // 判断节点 i, l, r 中值最大的节点,记为 ma
        int l = left(i), r = right(i), ma = i;
        if (l < size() && maxHeap.get(l) > maxHeap.get(ma))
            ma = l;
        if (r < size() && maxHeap.get(r) > maxHeap.get(ma))
            ma = r;
        // 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
        if (ma == i)
            break;
        // 交换两节点
        swap(i, ma);
        // 循环向下堆化
        i = ma;
    }
}
/* 元素出堆 */
void pop() {
    // 判空处理
    if (isEmpty()) {
        throw out_of_range("堆为空");
    }
    // 交换根节点与最右叶节点(交换首元素与尾元素)
    swap(maxHeap[0], maxHeap[size() - 1]);
    // 删除节点
    maxHeap.pop_back();
    // 从顶至底堆化
    siftDown(0);
}

/* 从节点 i 开始,从顶至底堆化 */
void siftDown(int i) {
    while (true) {
        // 判断节点 i, l, r 中值最大的节点,记为 ma
        int l = left(i), r = right(i), ma = i;
        if (l < size() && maxHeap[l] > maxHeap[ma])
            ma = l;
        if (r < size() && maxHeap[r] > maxHeap[ma])
            ma = r;
        // 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
        if (ma == i)
            break;
        swap(maxHeap[i], maxHeap[ma]);
        // 循环向下堆化
        i = ma;
    }
}

Top-k 问题

Q:给定一个长度为 n的无序数组 nums ,请返回数组中最大的 k个元素。

方法一:遍历选择

其时间复杂度趋向于O(n2) ,非常耗时。

 当 k=n 时,可以得到完整的有序序列,此时等价于“选择排序”算法。

方法二:排序

如图所示,我们可以先对数组 nums 进行排序,再返回最右边的 k 个元素,时间复杂度为 O(nlog⁡n) 。

显然,该方法“超额”完成任务了,因为我们只需找出最大的k个元素即可,而不需要排序其他元素。

方法三:堆

可以基于堆更加高效地解决 Top-k 问题,流程如图所示。

  1. 初始化一个小顶堆,其堆顶元素最小。
  2. 先将数组的前 k 个元素依次入堆。
  3. 从第 k+1 个元素开始,若当前元素大于堆顶元素,则将堆顶元素出堆,并将当前元素入堆。
  4. 遍历完成后,堆中保存的就是最大k 个元素。

天才!!!

/* 基于堆查找数组中最大的 k 个元素 */
Queue<Integer> topKHeap(int[] nums, int k) {
    // 初始化小顶堆
    Queue<Integer> heap = new PriorityQueue<Integer>();
    // 将数组的前 k 个元素入堆
    for (int i = 0; i < k; i++) {
        heap.offer(nums[i]);
    }
    // 从第 k+1 个元素开始,保持堆的长度为 k
    for (int i = k; i < nums.length; i++) {
        // 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
        if (nums[i] > heap.peek()) {
            heap.poll();
            heap.offer(nums[i]);
        }
    }
    return heap;
}
/* 基于堆查找数组中最大的 k 个元素 */
priority_queue<int, vector<int>, greater<int>> topKHeap(vector<int> &nums, int k) {
    // 初始化小顶堆
    priority_queue<int, vector<int>, greater<int>> heap;
    // 将数组的前 k 个元素入堆
    for (int i = 0; i < k; i++) {
        heap.push(nums[i]);
    }
    // 从第 k+1 个元素开始,保持堆的长度为 k
    for (int i = k; i < nums.size(); i++) {
        // 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
        if (nums[i] > heap.top()) {
            heap.pop();
            heap.push(nums[i]);
        }
    }
    return heap;
}

总共执行了 n轮入堆和出堆,堆的最大长度为 k ,因此时间复杂度为 O(nlog⁡k) 。该方法的效率很高,当 k 较小时,时间复杂度趋向 O(n) ;当 n 较大时,时间复杂度不会超过 O(nlog⁡n) 。

另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现最大的 k个元素的动态更新。


总结

  • 堆是一棵完全二叉树,根据成立条件可分为大顶堆和小顶堆。大(小)顶堆的堆顶元素是最大(小)的。
  • 优先队列的定义是具有出队优先级的队列,通常使用堆来实现。
  • 堆的常用操作及其对应的时间复杂度包括:元素入堆 O(log⁡n)、堆顶元素出堆 O(log⁡n) 和访问堆顶元素 O(1) 等。
  • 完全二叉树非常适合用数组表示,因此我们通常使用数组来存储堆。
  • 堆化操作用于维护堆的性质,在入堆和出堆操作中都会用到。
  • 输入 n 个元素并建堆的时间复杂度可以优化至 O(n) ,非常高效。
  • Top-k 是一个经典算法问题,可以使用堆数据结构高效解决,时间复杂度为 O(nlog⁡K) 。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1364473.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

分布式系统——广播Broadcasts

1 广播抽象(Broadcast Abstractions)在进程中的两种方法 在分布式系统中广播抽象的概念。广播抽象允许系统中的进程使用两种基本方法进行通信&#xff1a; 1.1 Broadcast(m) 当一个进程 i 使用这个方法时&#xff0c;它会将消息 m 发送给系统中的所有其它进程。 1.2 …

数据结构实验1:栈和队列的应用

目录 一、实验目的 二、实验原理 1.1栈的基本操作 1.1.1 栈的定义 1.1.2 初始化栈 1.1.3 压栈&#xff08;Push&#xff09; 1.1.4 出栈&#xff08;Pop&#xff09; 1.1.5 判空&#xff08;isEmpty&#xff09; 1.1.6 查看栈顶元素&#xff08;Top&#xff09; 1.1…

【好书推荐】我的第一本科技漫画书:漫画区块链

王杰&#xff0c;南京理工大学物理电子学硕士&#xff0c;曾担任乐视VR技术总监&#xff0c;现为北京米唐科技有限公司CEO&#xff0c;知乎“区块链”领域知名作者&#xff0c;北京信息科技大学、北京建筑大学、北京信息职业技术学院客座教授。 郑巍&#xff0c;擅长绘制钢笔淡…

application.properties 如何改成 application.yml

Convert YAML and Properties File 右键直接转换即可 Further Reading &#xff1a; idea 常用插件

14_IO_其他流

文章目录 数据流DataOutputStream数据输出流DataInputStream数据输入流 打印流PrintStream字节打印流PrintWriter字符打印流 标准输入输出流标准输入流标准输出流 对象流(序列化与反序列化流)ObjectOutputStream序列化流ObjectInputStream反序列化流 RandomAccessFile随机访问文…

【Harmony OS - 网络请求】

在一个应用开发中&#xff0c;网络请求是必不可少的&#xff0c;我们一般用的fetch、axios来进行http请求&#xff0c;在鸿蒙中也可以通过createHppt来发生一个http请求&#xff0c;它们都是异步请求返回的Promise&#xff0c;下面我们将介绍’ohos.net.http’和axios这两种方式…

(21)Linux的文件描述符输出重定向

一、文件描述符 1、文件描述符的底层理解 在上一章中&#xff0c;我们已经把 fd 的基本原理搞清楚了&#xff0c;知道了 fd 的值为什么是 0,1,2,3,4,5... 也知道了 fd 为什么默认从 3 开始&#xff0c;而不是从 0,1,2&#xff0c;因为其在内核中属于进程和文件的对应关系。 …

Mysql SQL审核平台Yearning本地部署

文章目录 前言1. Linux 部署Yearning2. 本地访问Yearning3. Linux 安装cpolar4. 配置Yearning公网访问地址5. 公网远程访问Yearning管理界面6. 固定Yearning公网地址 前言 Yearning 简单, 高效的MYSQL 审计平台 一款MYSQL SQL语句/查询审计工具&#xff0c;为DBA与开发人员使用…

Python的基础练习题之学生管理系统

需求 使用Python基础写一个基于控制台的学生管理平台&#xff0c;里面功能分别是&#xff1a;1.录入学生信息2.查找学生信息3.删除学生信息4.修改学生信息5.排序6.统计学生总人数7.显示所有学生信息&#xff0c;要求数据存储在文件里。 代码 代码资源地址可以直接下载 效果图…

05 Ciso模拟器连接腾讯云物联网开发平台

Ciso声明&#xff1a;本篇文章基于使用腾讯云物联网平台连接自定义esp8266物联网设备(腾讯连连控制开关实现) - CSDN App改编 一、总体概览 功能描述&#xff1a; 使用腾讯连连小程序进行控制&#xff0c; Alarm&#xff08;警铃&#xff09;&#xff1a;开的时候&#xff…

【AI视野·今日Robot 机器人论文速览 第六十九期】Wed, 3 Jan 2024

AI视野今日CS.Robotics 机器人学论文速览 Wed, 3 Jan 2024 Totally 5 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Robotics Papers NID-SLAM: Neural Implicit Representation-based RGB-D SLAM in dynamic environments Authors Ziheng Xu, Jianwei Niu, Qingf…

实现在一个文件夹中找到特定名称特点格式的文件

当你要在一个文件夹中查找特定名称和格式的文件时&#xff0c;你可以使用 Python 的 os 和 fnmatch 模块。以下是一个简单的脚本示例&#xff0c;它可以在指定目录中查找文件&#xff1a; import os import fnmatchdef find_files(directory, pattern):"""在指…

C#使用栈方法遍历二叉树

步骤一&#xff1a;定义一个二叉树的节点类 定义一个二叉树的节点类&#xff0c;其中包含节点的值、左子节点和右子节点。 // 二叉树节点定义public class TreeNode{public int Value { get; set; } // 节点的值public TreeNode Left { get; set; } // 左子节点public TreeN…

Java Base64简单介绍

1. Base64工具 工具链接 2. Base64示例代码 public class Base64Demo {// 请注意&#xff0c;在处理二进制数据时&#xff08;例如图片或文件&#xff09;&#xff0c;不需要将字节数组转换为字符串再进行编码或解码&#xff0c;// 可以直接对字节数组进行Base64操作。上述…

Python基础知识总结3-面向对象进阶知识

面向对象三大特征介绍 继承子类扩展父类语法格式关于构造函数&#xff1a;类成员的继承和重写查看类的继承层次结构 object根类dir() 查看对象属性重写 __str__() 方法 多重继承MRO方法解析顺序super()获得父类定义多态特殊方法和运算符重载特殊属性 对象的浅拷贝和深拷贝组合_…

学习笔记——C++一维数组

1&#xff0c;一维数组的定义方式 三种定义方式 1&#xff0c;数据类型 数组名[ 数组长度 ]&#xff1b; 2&#xff0c;数据类型 数组名[ 数组长度 ]{值1&#xff0c;值2&#xff0c;值3 ……}&#xff1b;//未说明的元素用0填补 3&#xff0c;数据类型 数组名[ ]{值1&…

【数据仓库与联机分析处理】数据仓库工具Hive

目录 一、Hive简介 &#xff08;一&#xff09;什么是Hive &#xff08;二&#xff09;优缺点 &#xff08;三&#xff09;Hive架构原理 &#xff08;四&#xff09;Hive 和数据库比较 二、MySQL的安装配置 三、Hive的安装配置 1、下载安装包 2、解压并改名 3、配置环…

嵌入式培训机构四个月实训课程笔记(完整版)-Linux系统编程第三天-Linux进程练习题(物联技术666)

更多配套资料CSDN地址:点赞+关注,功德无量。更多配套资料,欢迎私信。 物联技术666_嵌入式C语言开发,嵌入式硬件,嵌入式培训笔记-CSDN博客物联技术666擅长嵌入式C语言开发,嵌入式硬件,嵌入式培训笔记,等方面的知识,物联技术666关注机器学习,arm开发,物联网,嵌入式硬件,单片机…

React 中条件渲染的 N 种方法

本文作者系360奇舞团前端开发工程师 条件渲染在React开发中非常重要的功能&#xff0c;它允许开发人员根据条件控制渲染的内容&#xff0c;在创建动态和交互式用户界面方面发挥着至关重要的作用&#xff0c;本文总结了常用的的条件渲染方法。 1.If-else if-else是一种控制流程的…

rime中州韵小狼毫 敏感词脱敏滤镜

快速录入&#xff0c;是任何一个输入法&#xff0c;以及输入人员&#xff08;无论是否专业&#xff09;的追求目标之一。现实中&#xff0c;由于各种输入法在录入文本时&#xff0c;都无法完全避免重码的问题&#xff0c;所以在输入过程中都或多或少的需要进行选字/选词操作。这…