实验笔记之——基于COLMAP的Instant-NGP与3D Gaussian Splatting的对比

news2024/11/15 23:39:02

之前博客进行了COLMAP在服务器下的测试

实验笔记之——Linux实现COLMAP-CSDN博客文章浏览阅读794次,点赞24次,收藏6次。学习笔记之——NeRF SLAM(基于神经辐射场的SLAM)-CSDN博客NeRF 所做的任务是 Novel View Synthesis(新视角合成),即在若干已知视角下对场景进行一系列的观测(相机内外参、图像、Pose 等),合成任意新视角下的图像。传统方法中,通常这一任务采用三维重建再渲染的方式实现,NeRF 希望不进行显式的三维重建过程,仅根据内外参直接得到新视角渲染的图像。之前博客跑instant-NGP的时候,除了用官方的数据集,用自己的数据则是通过手机采集,同时获得pose与image。https://blog.csdn.net/gwplovekimi/article/details/135389922?spm=1001.2014.3001.5501而下面两个博客则分别实现了NGP与3DGS

实验笔记之——基于Linux服务器复现Instant-NGP及常用的tmux指令-CSDN博客文章浏览阅读255次,点赞7次,收藏6次。学习笔记之——NeRF SLAM(基于神经辐射场的SLAM)-CSDN博客NeRF 所做的任务是 Novel View Synthesis(新视角合成),即在若干已知视角下对场景进行一系列的观测(相机内外参、图像、Pose 等),合成任意新视角下的图像。传统方法中,通常这一任务采用三维重建再渲染的方式实现,NeRF 希望不进行显式的三维重建过程,仅根据内外参直接得到新视角渲染的图像。配置好后,通过./instant-ngp或者scripts/run.py就可以运行了。这个编译好像比较耗费时间~https://blog.csdn.net/gwplovekimi/article/details/135365847?spm=1001.2014.3001.5501实验笔记之——Gaussian Splatting-CSDN博客文章浏览阅读691次,点赞23次,收藏8次。之前博客对NeRF-SLAM进行了调研学习笔记之——NeRF SLAM(基于神经辐射场的SLAM)-CSDN博客NeRF 所做的任务是 Novel View Synthesis(新视角合成),即在若干已知视角下对场景进行一系列的观测(相机内外参、图像、Pose 等),合成任意新视角下的图像。传统方法中,通常这一任务采用三维重建再渲染的方式实现,NeRF 希望不进行显式的三维重建过程,仅根据内外参直接得到新视角渲染的图像。https://blog.csdn.net/gwplovekimi/article/details/135349210?spm=1001.2014.3001.5501这两篇博客中,测试public的数据集效果都不错,但是用iphone的record3D录制的要么不能用要么效果很差,为此统一采用COLMAP来计算pose,再次进行测试以及对比两个方法

目录

基于COLMAP的3DGS

基于COLMAP的NGP

3DGS训练好的模型加载进行可视化


基于COLMAP的3DGS

GitHub - graphdeco-inria/gaussian-splatting: Original reference implementation of "3D Gaussian Splatting for Real-Time Radiance Field Rendering"

首先分别运行下面的命令来启动3DGS并可视化其在线训练的过程

conda activate 3DGS

cd gaussian-splatting/

python train.py -s /home/gwp/dataset/30fps

下面在MobaXterm下运行

conda activate 3DGS

cd gaussian-splatting/

./SIBR_viewers/install/bin/SIBR_remoteGaussian_app

训练5分钟左右的结果

训练过程的各种视角请见下视频

基于COLMAP测试3D Gaussian Splatting(训练过程可视化)

基于COLMAP的NGP

GitHub - NVlabs/instant-ngp: Instant neural graphics primitives: lightning fast NeRF and more

https://github.com/NVlabs/instant-ngp/blob/master/docs/nerf_dataset_tips.md

由于NGP支持的数据格式跟3DGS稍有不同,为此需要进行处理

对于参数“aabb_scale ”,如说明文档所言:

“The aabb_scale parameter is the most important instant-ngp specific parameter. It specifies the extent of the scene, defaulting to 1; that is, the scene is scaled such that the camera positions are at an average distance of 1 unit from the origin. For small synthetic scenes such as the original NeRF dataset, the default aabb_scale of 1 is ideal and leads to fastest training. The NeRF model makes the assumption that the training images can entirely be explained by a scene contained within this bounding box. However, for natural scenes where there is a background that extends beyond this bounding box, the NeRF model will struggle and may hallucinate "floaters" at the boundaries of the box. By setting aabb_scale to a larger power of 2 (up to a maximum of 128), the NeRF model will extend rays to a much larger bounding box. Note that this can impact training speed slightly. If in doubt, for natural scenes, start with an aabb_scale of 128, and subsequently reduce it if possible. The value can be directly edited in the transforms.json output file, without re-running the scripts/colmap2nerf.py script.”

aabb_scale 参数是最重要的 instant-ngp 特定参数。指定场景的范围,默认为1;也就是说,场景被缩放,使得摄像机位置距原点的平均距离为 1 个单位。对于小型合成场景(例如原始 NeRF 数据集),默认的 aabb_scale 1 是理想的,并且可以实现最快的训练。 NeRF 模型假设训练图像可以完全由该边界框内包含的场景来解释。然而,对于背景超出此边界框的自然场景,NeRF 模型将陷入困境,并可能在框的边界处产生“漂浮物”的幻觉。通过将 aabb_scale 设置为更大的 2 次方(最大可达 128),NeRF 模型会将光线扩展到更大的边界框。请注意,这可能会稍微影响训练速度。如果有疑问,对于自然场景,请从 128 的 aabb_scale 开始,然后在可能的情况下减小它。该值可以直接在transforms.json输出文件中编辑,无需重新运行scripts/colmap2nerf.py脚本。

那么此处就先设置为128吧~

data-folder$ python ~/instant-ngp/scripts/colmap2nerf.py --colmap_matcher exhaustive --run_colmap --aabb_scale 128

注意图片的文件名字需要是images(当然也可以通过输入参数修改了)

过程感觉跟3DGS中的差不多~也是一样的耗时hhh(记得要开tmux),只是数据格式支持不一样~

不知道为啥生成的transform.json只有2个camera~

改为下面的命令测试则可以了!(添加了--colmap_camera_model SIMPLE_PINHOLE)

data-folder$ python ~/instant-ngp/scripts/colmap2nerf.py --colmap_matcher exhaustive --run_colmap --aabb_scale 32 --colmap_camera_model SIMPLE_PINHOLE

同时用colmap gui也试试

NGP的运行代码如下:

conda activate nerf-ngp

cd instant-ngp/

./instant-ngp /home/gwp/dataset/30fps_for_ngp/

结果如下图所示

虽然渲染久一些效果会有点提升

但是这个效果应该是不如3DGS的~(这可能也跟上面提到的aabb_scale有关)

把值从32改为1的效果如下:

好像更差~那改为128呢?

好像有点提升,但是比起3DGS还是差一些~

渲染的过程可视化如下

基于COLMAP测试Instant-NGP(训练过程可视化)

3DGS训练好的模型加载进行可视化

上面的测试中都是边训练边看效果,此处看看直接训练好开奖的结果吧哈~

如下图所示,大概半个小时左右,训练好了一个3DGS,看着PSNR还挺高的,打算加载看看效果~

平时边训练边看结果的代码如下:

conda activate 3DGS

cd gaussian-splatting/

./SIBR_viewers/install/bin/SIBR_remoteGaussian_app

但如果当前没有训练会看到加载的空空如也~

细看gaussian-splatting/的文件组成会发现,它会把训练的结果保存在output中

这个就是当前训练好的模型了。如果要指向某个训练好的模型,应该是

./<SIBR install dir>/bin/SIBR_gaussianViewer_app -m <path to trained model>


./SIBR_viewers/install/bin/SIBR_gaussianViewer_app -m "/home/gwp/gaussian-splatting/output/1f6d93f1-5/"

效果如下视频所示

基于COLMAP测试3D Gaussian Splatting(训练好的模型)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1360003.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

静态网页设计——个人兴致小屋(HTML+CSS+JavaScript)

前言 使用技术&#xff1a;HTMLCSSJS 主要内容&#xff1a;对个人兴致的一些介绍&#xff0c;画风优美。 主要内容 1、首页 首页是一个优美的背景加一句欢迎来到xxx的兴致小屋&#xff0c;可将XXX改成自己。点击确定可以跳到主页。 部分代码&#xff1a; <body><…

接口自动化-allure测试报告

学习目标&#xff1a; 1、测试报告的作用 2、allure的安装 3、allure的基本使用 4、allure的高级使用 学习内容&#xff1a; 1、测试报告的作用 自动化接口的结果呈现虽然可以通过日志文件去查看用例的成功或者失败&#xff0c;但是这样的结果就是不美观&#xff0c;不能…

外包干了3个多月,技术退步明显。。。。。

先说一下自己的情况&#xff0c;本科生生&#xff0c;19年通过校招进入广州某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测…

阿里云大模型「让照片跳舞」刷屏朋友圈,有哪些信息值得关注?

介绍 大家好&#xff0c;我分享聊聊阿里通义千问APP中全民舞王功能。 网络热舞结合AI视频&#xff0c;这是以后不用学习跳舞&#xff1f; 可以尝试下效果&#xff0c;一张图片生成视频。 APP快速使用 搜索下载通义千问APP 打开APP&#xff0c;选中一张照片来跳舞。 这里…

Halcon算子精讲:形态学操作(圆形操作)

膨胀操作&#xff08;圆形膨胀&#xff09; 算子 dilation_circle(Region, RegionDilation, 3.5) 原理 将区域中边界的每个像素点以3.5为半径做圆&#xff0c;原有区域 所做圆区域 膨胀后区域。 作用 扩大目标所在区域或连接区域破碎部分。 对比图 腐蚀操作&#xff08;圆…

陀螺研究院发布《中国产业区块链生态图谱 2024版》

从发展实践来看&#xff0c;产业区块链在我国已历经了4年的高速发展&#xff0c;发展至今&#xff0c;我国区块链发展环境基本夯实&#xff0c;形成了技术突破与应用拓宽的创新土壤&#xff0c;围绕区块链为主体的产业链条不断纵深延伸&#xff0c;在基础设施支撑、融合创新拓展…

外包干了5个月,技术明显退步了...

先说一下自己的情况&#xff0c;本科生&#xff0c;19年通过校招进入湖南某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年12月份&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测…

惊呆:RocketMQ顺序消息,是“4把锁”实现的(顺序消费)

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50)中&#xff0c;最近有小伙伴拿到了一线互联网企业如阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格&#xff0c;遇到很多关于RocketMQ 的、很重要的面试题&#xff1a; 如何保证RocketMQ消息有序&#xff1f; Ro…

一文详解 Java 限流接口实现

作者&#xff1a;非有 一、限流 1.1 为什么要进行限流&#xff1f; 1.瞬时流量过高&#xff0c;服务被压垮&#xff1f; 2.恶意用户高频光顾&#xff0c;导致服务器宕机&#xff1f; 3.消息消费过快&#xff0c;导致数据库压力过大&#xff0c;性能下降甚至崩溃&#xff1f…

图像分割实战-系列教程10:U2NET显著性检测实战2

&#x1f341;&#x1f341;&#x1f341;图像分割实战-系列教程 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Pycharm中进行 本篇文章配套的代码资源已经上传 U2NET显著性检测实战1 U2NET显著性检测实战2 U2NET显著性检测实战3 5、残差Unet模块 class RSU7(n…

【经验】VSCode连接远程服务器(可以使用git管理、方便查看和编辑Linux源码)

1、查看OpenSSH Windows10通常自带OpenSSH不需要安装。 Windows10下检查是否已经安装OpenSSH的方法: 1)按下快捷键Win + X,选择Windows PoweShell(管理员) 2)输入以下指令: Get-WindowsCapability -Online | ? Name -like ‘OpenSSH*’ 3)如果电脑未安装OpenSSH,…

全视通-医院智能视讯系统 病房视讯系统解决方案 智能医院对讲系统信息发布系统

医院智能视讯系统解决方案 1、行业背景 对于患者来说现阶段各大医院的住院部大都面临同样的问题&#xff0c;例如患者就医缺乏精准化医疗&#xff0c;缺乏对患者的心理健康引导&#xff0c;缺乏多维度沟通渠道&#xff0c;缺乏多元增值服务等。 对于传统医院住院部病房&am…

C# Attribute特性实战(1):Swtich判断优化

文章目录 前言简单Switch问题无参Swtich方法声明Swtich Attribute声明带有Swtich特性方法主方法结果 有参Switch修改代码修改运行过程运行结果 总结 前言 在经过前面两章内容的讲解&#xff0c;我们已经简单了解了如何使用特性和反射。我们这里解决一个简单的案例 C#高级语法 …

【Unity】如何在Unity中使用C#的NuGet 包资源

【背景】 Unity的脚本语言是C#&#xff0c;而C#有很多功能和能力可以通过nuget包提供。有没有办法把这些能力结合到Unity中一起使用呢&#xff1f;如果可以&#xff0c;那将大大扩展Unity中各类功能实现的便捷性。 【方法】 答案是&#xff1a;你可以&#xff01; 获取Nuge…

【数据库原理】(8)关系数据库的关系代数

关系数据语言可以分为三类: 关系代数、关系演算和介于关系代数与关系演算之间的语言 SQL。 下面专门讲述用对关系进行运算来表达查询要求的关系代数。关系代数的运算对象是关系&#xff0c;运算结果也是关系。关系代数用到的运算符包括四类:集合运算符、专门的关系运算符、算术…

Mac上安装 Node.js 的版本管理工具 n,以及 n 使用,的使用

安装 最近刚更换 Mac 本进行项目的开发&#xff0c;刚上手 Mac 本还不是很熟练&#xff0c;需要安装 Node.js 的包管理工具 在 Windows 上我是实用的 nvm 来管理的 Node 版本&#xff0c;但是我尝试下载 Nvm &#xff0c;发现下载安装后的 Nvm 无法使用&#xff0c;提示 “Th…

关于苹果iOS 16:揭开伪装成飞机模式的隐形蜂窝接入漏洞的动态情报

一、基本内容 在日常生活中&#xff0c;网络威胁不断演变&#xff0c;给个人和组织带来了一系列重大挑战。网络犯罪分子使用的一种最常见的、最具破坏性的方法之一就是网络钓鱼。这种攻击方式通过电子邮件、短信或其他通讯渠道冒充可信实体&#xff0c;诱使个人泄露敏感信息&am…

AI到底是啥?

什么是AI? AI&#xff0c;即人工智能&#xff08;Artificial Intelligence&#xff09;&#xff0c;是一门研究如何让机器模拟人类智能的学科。它涉及到构建可以感知、推理、学习和决策的智能系统&#xff0c;以解决复杂问题和实现人类类似的任务。 AI的技术包括机器学习、自…

Nginx 开启目录浏览功能

目录 1.没开启前的页面效果 2.开启目录浏览 1.没开启前的页面效果 这是我的一个网站页面&#xff0c;没配置目录浏览功能前的效果 2.开启目录浏览 来到 server 配置文件下 /etc/nginx/conf.d, 然后编辑配置文件&#xff0c;保存之后查看语法是否正确 autoindex on; # 开启目…

MySQL数据库的CURD、常见函数及UNION和UNION ALL

一、概述 MySQL是一种流行的关系型数据库管理系统&#xff0c;广泛应用于各种应用场景。在MySQL中&#xff0c;CURD操作是指创建&#xff08;Create&#xff09;、读取&#xff08;Read&#xff09;、更新&#xff08;Update&#xff09;和删除&#xff08;Delete&#xff09;…