pytorch集智-1安装与简单使用

news2024/11/26 20:31:11

1 安装

1.1 简介

pytorch可用gpu加速,也可以不加速。gpu加速是通过cuda来实现,cuda是nvidia推出的一款运算平台,它可以利用gpu提升运算性能。

所以如果要装带加速的pytorch,需要先装cuda,再装pytorch,如果不需用加速,即默认用cpu计算,可不用装cuda

装cuda需要电脑有nvidia的显卡,如果你的网卡是amd,那么抱歉,windows上装不了加速的pytorch,因为cuda不支持amd,pytorch也不支持amd。不过可以装没加速的pytorch,因为官网写了,pytorch不支持amd,但linux上pytorch支持amd(ROCm)

1.2 安装

官网上如果能安装,直接拷贝命令安装就行。我的环境是windows下conda环境,官网那个页面就可以选stable(稳定版),windows,conda,python,cpu,然后拷贝下面'run this command'处的命令去安装

注意

1 当时安装时下载包超时一直报错,可以去国内镜像下载对应的版本包,然后conda install --offline package_name离线安装

2 原理与简单使用

2.1 常规命令

x = torch.rand(5, 3) # 5行3列的值在0-1范围内矩阵
y = torch.randn(5, 3) # 5行3列满足均值0方差1正态分布的矩阵
z = torch.ones(2, 5, 3)
x.mm(y.t()) # x和y矩阵乘法
x.mm(y.T) # 同上,写法不同
x * y # # x和y数乘,需满足x和y矩阵形状相同

# pytorch和numpy转换
x = torch.randn(2, 3)
y = np.random.rand(2, 3)
x_np = x.numpy()
y_torch = torch.from_numpy(y)

# 使用gpu张量运算
if torch.cuda.is_available(): # 判断torch是否可cuda加速
    x = x.cuda()
    y = y.cuda()
    print(x + y)

# 使用cpu张量运算(把x.cuda()换成x.cpu()即可)
x.cpu()
...


2.2 动态计算图

可为神经网络提供统一的反向传播算法方案,可以使人专注于神经网络设计。通过动态计算图,在神经网络运算完成后,可以让反向传播算法自动运行。好处是不用手动设计反向传播算法,动态计算图弄成了自动

计算图的解决思路是将正向计算过程记录下来,只要计算过程可微分,就可以对计算过程求导算梯度

计算图有静态的和动态的,pytorch即支持动态也可以静态

2.3 自动微分变量

pytorch通过自动微分变量实现动态计算图,自动微分变量比一般张量结构更复杂

如何反向传播:计算图弄好后,直接调用.backward()即可获取每个计算过程梯度,并存储在自动微分变量结构体中

自动微分变量有三个重要属性data, grad, grad_fn

data存储自动微分变量的值

grad存储自动微分变量的梯度

grad_fn就是计算图中每个箭头和其方向,这样就可以通过grad_fn回溯计算图。调backward后,会将每个变量的梯度保存到变量的grad属性中

创自动微分变量时,通过传入关键字requires_grad为True实现

x = torch.ones(2, 2, requires_grad=True)

pytorch 0.4版本以后,自动微分变量和一般张量合并了,即可以不用显式传入requires_grad获取的张量也是自动微分变量

backward方法只能对计算图的叶节点调用,如果非叶节点调用会得到None

3 实例

from matplotlib import pyplot as plot

import torch
from sklearn.model_selection import train_test_split

class Sample():
    def exec(self):
        self.prepare_data()
        self.train()
        self.predict()
        self.plot()
    
    def prepare_data(self):
        self.x = torch.linspace(1, 100, 100).type(torch.FloatTensor)
        rand = torch.randn(100) * 10
        self.y =  self.x + rand
        #self.data = train_test_split(self.x, self.y)
        self.data = self.x[:-10], self.x[-10:], self.y[:-10], self.y[-10:]
        self.a = torch.rand(1, requires_grad=True)
        self.b = torch.rand(1, requires_grad=True)
        self.learning_rate = 0.0001

    def train(self):
        for i in range(2000):
            prediction = self.a.expand_as(self.data[0]) * self.data[0] + self.b.expand_as(self.data[0])
            loss = torch.mean((prediction - self.data[2]) ** 2)
            if i % 200 == 0:
                print(f'loss: {loss}')
            loss.backward()
            self.a.data.add_( - self.learning_rate * self.a.grad.data)
            self.b.data.add_( - self.learning_rate * self.b.grad.data)
            self.a.grad.data.zero_()
            self.b.grad.data.zero_()
            
    def predict(self):
        self.pred = self.a.expand_as(self.data[1]) * self.data[1] + self.b.expand_as(self.data[1])
            
    def plot(self):
        plot.figure(figsize=(10, 8))
        plot.plot(self.data[0].data, self.data[2].data, 'o')
        plot.plot(self.data[1].data, self.data[3].data, 's')
        plot.plot(self.data[0], self.data[0] * self.a.data + self.b.data)
        plot.plot(self.data[1], self.pred.detach().numpy(), 'o')
        plot.xlabel('x')
        plot.ylabel('y')
        plot.show()

def main():
    Sample().exec()
    pass

if __name__ == '__main__':
    main()

注意

1 self.b.data.add()和self.b.data.add_()区别是带下划线的是自运算,即将运算获得的值赋值给自身

2 对a b调用expand_as是为了扩维至x,因为a,b是数,但x是矩阵

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1357459.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【重点】【BFS】542.01矩阵

题目 法1&#xff1a;经典BFS 下图中就展示了我们方法&#xff1a; class Solution {public int[][] updateMatrix(int[][] mat) {int m mat.length, n mat[0].length;int[][] dist new int[m][n];boolean[][] used new boolean[m][n];Queue<int[]> queue new Li…

excel中解决多行文本自动调整行高后打印预览还是显示不全情况

注意&#xff1a;此方法对于多行合并后单元格行高调整不适用&#xff0c;需要手动调整&#xff0c;如大家有简便方法&#xff0c;欢迎评论。 一、调整表格为自动调整行高 1&#xff09;点击此处全选表格 2&#xff09;在第一行序号单元格的下端&#xff0c;鼠标成黑十字时&am…

【React系列】父子组件通信—props属性传值

本文来自#React系列教程&#xff1a;https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzg5MDAzNzkwNA&actiongetalbum&album_id1566025152667107329) 一. 认识组件的嵌套 组件之间存在嵌套关系&#xff1a; 在之前的案例中&#xff0c;我们只是创建了一个组件App&…

机器人制作开源方案 | 清洁机器人

作者&#xff1a;胡志宇、白永康、颉志国、刘昭迅、王维浩 单位&#xff1a;北京石油化工学院 指导老师&#xff1a;陈亚、王殿军 1. 设计方案论证 1.1 清洁机器人方案选择 目前&#xff0c;市场上清洁机器人比比皆是&#xff0c;各大品牌之间的竞争也相当激烈&#xff0c;…

docker kafka go demo

配置 创建网桥 docker network create app-tier --driver bridge拉取并启动镜像 docker run -d --name kafka-server --hostname kafka-server \--network app-tier \-p 9092:9092 \-e ALLOW_PLAINTEXT_LISTENERyes \-e KAFKA_CFG_ADVERTISED_LISTENERSPLAINTEXT://192.168.…

链表--206. 反转链表/easy

206. 反转链表 1、题目2、题目分析3、解题步骤4、复杂度最优解代码示例5、抽象与扩展 1、题目 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1]示例 2…

【大数据进阶第二阶段之Hadoop学习笔记】Hadoop 运行环境搭建

【大数据进阶第二阶段之Hadoop学习笔记】Hadoop 概述-CSDN博客 【大数据进阶第二阶段之Hadoop学习笔记】Hadoop 运行环境搭建-CSDN博客 【大数据进阶第二阶段之Hadoop学习笔记】Hadoop 运行模式-CSDN博客 1、模板虚拟机环境准备 1.1、 hadoop100 虚拟机配置要求如下 &…

如何通过Python将各种数据写入到Excel工作表

在数据处理和报告生成等工作中&#xff0c;Excel表格是一种常见且广泛使用的工具。然而&#xff0c;手动将大量数据输入到Excel表格中既费时又容易出错。为了提高效率并减少错误&#xff0c;使用Python编程语言来自动化数据写入Excel表格是一个明智的选择。Python作为一种简单易…

【Spring进阶系列丨第六篇】Spring的Bean管理(基于注解)

文章目录 一、说明二、用于创建对象的2.1、Component注解2.1.1、定义Bean2.1.2、主配置文件配置扫描注解2.1.3、测试2.1.4、Component注解总结 2.2、Controller注解2.3、Service注解2.4、Repository注解 三、用于注入数据的3.1、Autowired注解3.1.1、定义Bean3.1.2、主配置文件…

《PCI Express体系结构导读》随记 —— 第I篇 第2章 PCI总线的桥与配置(6)

接前一篇文章&#xff1a;《PCI Express体系结构导读》随记 —— 第I篇 第2章 PCI总线的桥与配置&#xff08;5&#xff09; 2.2 HOST主桥 本节以MPC8548处理器为例&#xff0c;说明HOST主桥在PowerPC处理器中的实现机制&#xff0c;并简要介绍x86处理器系统使用的HOST主桥。 …

【springboot+vue项目(零)】开发项目经验积累(处理问题)

一、VUEElement UI &#xff08;一&#xff09;elementui下拉框默认值不是对应中文问题 v-model绑定的值必须是字符串&#xff0c;才会显示默认选中对应中文&#xff0c;如果是数字&#xff0c;则显示数字&#xff0c;修改为&#xff1a; handleOpenAddDialog() {this.dialogT…

【Emgu.CV教程】第24篇 、色彩处理之LUT()查找表转换颜色

LUT (Look-Up Table)查找表转换&#xff0c;是对原始图像的像素数值进行快速转换&#xff0c;以实现图像的像素压缩目的。LUT()函数的官方定义如下&#xff1a; public static void LUT(IInputArray src, // 输入图像IInputArray lut, // 查找表IOutputArray dst, // 输出图像…

2023春季李宏毅机器学习笔记 05 :机器如何生成图像

资料 课程主页&#xff1a;https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub&#xff1a;https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程&#xff1a;https://space.bilibili.com/253734135/channel/collectiondetail?sid2014800 一、图像生成常见模型…

提示循环引用 一个循环引用但无法列出导致循环的引用且文件打不开无法修改

目录 设备环境&#xff1a; 提示内容&#xff1a; 具体错误问题描述&#xff1a; 图示&#xff1a; Office 报错 WPS 报错 问题分析&#xff1a; 问题解决&#xff1a; 关注我的 GitHub&#xff08;魔法网络访问&#xff09;&#xff1a; 设备环境&#xff1a; Window…

(湖科大教书匠)计算机网络微课堂(下)

第四章、网络层 网络层概述 网络层主要任务是实习网络互连&#xff0c;进而实现数据包在各网络之间的传输 因特网使用TCP/IP协议栈 由于TCP/IP协议栈的网络层使用网际协议IP&#xff0c;是整个协议栈的核心协议&#xff0c;因此TCP/IP协议栈的网络层常称为网际层 网络层提供…

1.1 理解大数据(2)

小肥柴的Hadoop之旅 1.1 理解大数据&#xff08;2&#xff09; 目录1.1 理解大数据1.1.3 大数据概述1.1.4 更多思考 参考文献和资料 目录 1.1 理解大数据 1.1.3 大数据概述 step_0 大数据定义 【《大数据算法设计分析》】&#xff1a; 通常来讲大数据&#xff08;Big Data&am…

【Linux操作系统】探秘Linux奥秘:Linux 操作系统的解密与实战

&#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;《操作系统实验室》&#x1f516;诗赋清音&#xff1a;柳垂轻絮拂人衣&#xff0c;心随风舞梦飞。 山川湖海皆可涉&#xff0c;勇者征途逐星辉。 目录 &#x1fa90;1 初识Linux OS …

目标跟踪算法中的卡尔曼滤波学习

在使用多目标跟踪算法时&#xff0c;接触到卡尔曼滤波&#xff0c;一直没时间总结下&#xff0c;现在来填坑。 1. 背景知识 在理解卡尔曼滤波前&#xff0c;有几个概念值得考虑下&#xff1a;时序序列模型&#xff0c;滤波&#xff0c;线性动态系统 1. 时间序列模型 时间序…

Elasticsearch:Serarch tutorial - 使用 Python 进行搜索 (一)

本实践教程将教你如何使用 Elasticsearch 构建完整的搜索解决方案。 在本教程中你将学习&#xff1a; 如何对数据集执行全文关键字搜索&#xff08;可选使用过滤器&#xff09;如何使用机器学习模型生成、存储和搜索密集向量嵌入如何使用 ELSER 模型生成和搜索稀疏向量如何使用…