【经典算法】有趣的算法之---蚁群算法梳理

news2024/12/26 20:44:45

every blog every motto: You can do more than you think.

0. 前言

蚁群算法记录

img

1. 简介

蚁群算法(Ant Clony Optimization, ACO)是一种群智能算法,它是由一群无智能或有轻微智能的个体(Agent)通过相互协作而表现出智能行为,从而为求解复杂问题提供了一个新的可能性。蚁群算法最早是由意大利学者Colorni A., Dorigo M. 等于1991年提出。经过20多年的发展,蚁群算法在理论以及应用研究上已经得到巨大的进步。

蚂蚁在寻找食物的过程中往往是随机选择路径的,但它们能感知当前地面上的信息素浓度,并倾向于往信息素浓度高的方向行进。信息素由蚂蚁自身释放,是实现蚁群内间接通信的物质。由于较短路径上蚂蚁的往返时间比较短,单位时间内经过该路径的蚂蚁多,所以信息素的积累速度比较长路径快。因此,当后续蚂蚁在路口时,就能感知先前蚂蚁留下的信息,并倾向于选择一条较短的路径前行。这种正反馈机制使得越来越多的蚂蚁在巢穴与食物之间的最短路径上行进。由于其他路径上的信息素会随着时间蒸发,最终所有的蚂蚁都在最优路径上行进。

img

2. TSP问题

蚁群算法最早用来求解TSP问题,并且表现出了很大的优越性,因为它分布式特性,鲁棒性强并且容易与其它算法结合,但是同时也存在这收敛速度慢,容易陷入局部最优(local optimal)等缺点。

TSP问题(Travel Salesperson Problem,即旅行商问题或者称为中国邮递员问题),是一种NP-hard问题,此类问题用一般的算法是很难得到最优解的,所以一般需要借助一些启发式算法求解,例如遗传算法(GA),蚁群算法(ACO),微粒群算法(PSO)等等。

TSP问题(旅行商问题)是指旅行家要旅行n个城市,要求各个城市经历且仅经历一次 然后回到出发城市,并要求所走的路程最短。

由上述蚂蚁找食物模式演变来的算法,即是蚁群算法。这种算法具有分布计算、信息正反馈和启发式搜索的特征,本质上是进化算法中的一种启发式全局优化算法

蚁群算法应用广泛,如旅行商问题(traveling salesman problem,简称TSP)、指派问题、Job-shop调度问题、车辆路径问题(vehicle routing problem)、图着色问题(graph coloring problem)和网络路由问题(network routing problem)等等。

3. 原理

设整个蚂蚁群体数量为m,城市数量为n,城市i和j之间的相互距离为 d i j d_{ij} dijt时刻城市i与城市j路径上的信息浓度为 τ i j ( t ) \tau_{ij}(t) τij(t),初始时刻,各城市间连接路径上的信息浓度相同,不妨设 τ ( 0 ) = τ 0 \tau(0)=\tau_0 τ(0)=τ0

3.1 转移概率

蚂蚁k根据各城市间连接路径上的信息素浓度决定其下一个访问的城市,设 P i j k ( t ) P^k_{ij}(t) Pijk(t)表示t时刻蚂蚁k从城市i到城市j的概率,计算公式如下:

P i j k = { [ τ i j ] α ⋅ [ η i j ( t ) ] β ∑ s ∈ a l l o w k [ τ i s ( t ) ] β ⋅ [ η i s ( t ) ] β , s ∈ a l l o w k 0 , s ∉ a l l o w k \LARGE P^k_{ij}=\left\{ \begin{matrix} {\big [\tau_{ij}\big]^{\alpha} ·\big [\eta_{ij}(t)\big ]^{\beta} \over \sum\limits_{s \in allow_k}\big [\tau_{is}(t) \big ]^{\beta} · \big [\eta_{is}(t) \big]^{\beta}} &, s \in allow_k \\ 0 &, s \notin allow_k \end{matrix} \right. Pijk=

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1343626.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JDK9及之后版本使用 jlink 生成定制化的 JRE

许多java软件的运行需要依赖jre,在 jdk8 之后,不再提供默认的 jre,后续如果项目中还是想用 jre 的形式发布软件,那么可以使用 jlink 工具生成 jre。 一、jlink 命令详解 jlink 二、查看jdk中包含的所有模块 如果在 jdk 安装文件夹…

css 用多个阴影做出光斑投影的效果 box-shadow

css 用多个阴影做出光斑投影的效果 box-shadow 你首先需要知道的一点是 box-shadow 可以接收多个值,也就是可以设置多个阴影,这样就可以做一个类似光斑投影的效果。 一、效果 二、代码 里面用到了我一些 scss 工具方法,不过不影响&#xf…

Android MVP 写法

前言 Model:负责数据逻辑 View:负责视图逻辑 Presenter:负责业务逻辑 持有关系: 1、View 持有 Presenter 2、Model 持有 Presenter 3、Presenter 持有 View 4、Presenter 持有 Model 辅助工具:ViewBinding 执行…

【华为机试】2023年真题B卷(python)-观看文艺汇演-计算演出场次

一、题目 题目描述: 一个人只能同时观看一场演出,且不能迟到早退,由于演出分布在不同的演出场地,所以连续观看的演出最少有15分钟的时间间隔,小明是一个狂热的文艺迷,想观看尽可能多的演出, 现给…

【并发设计模式】聊聊线程本地存储模式如何实现的线程安全

前面两篇文章,通过两阶段终止的模式进行优雅关闭线程,利用数据不变性的方式保证数据安全,以及基于COW的模式,保证读数据的安全。本篇我们来简述下如果利用线程本地存储的方式保证线程安全。 首先一个大前提就是并发问题&#xff…

八皇后问题(C语言)

了解题意 在一个8x8的棋盘上放置8个皇后,使得任何两个皇后都不能处于同一行、同一列或同一斜线上。问有多少种方法可以放置这8个皇后? 解决这个问题的目标是找到所有符合要求的皇后摆放方式,通常使用回溯算法来求解。回溯算法会尝试所有可能…

[蓝桥杯2022省赛] X 图形

X 图形 问题描述 给定一个字母矩阵。一个 X 图形由中心点和由中心点向四个 4545 度斜线方向引出的直线段组成,四条线段的长度相同,而且四条线段上的字母和中心点的字母相同。 一个 X 图形可以使用三个整数r,c,L 来描述,其中 r,c 表示中心点…

PiflowX组件-ReadFromKafka

ReadFromKafka组件 组件说明 从kafka中读取数据。 计算引擎 flink 有界性 Unbounded 组件分组 kafka 端口 Inport:默认端口 outport:默认端口 组件属性 名称展示名称默认值允许值是否必填描述例子kafka_hostKAFKA_HOST“”无是逗号分隔的Ka…

腾讯云标准型S5服务器4核8G配置优惠价格表

腾讯云4核8G服务器S5和轻量应用服务器优惠价格表,轻量应用服务器和CVM云服务器均有活动,云服务器CVM标准型S5实例4核8G配置价格15个月1437.3元,5年6490.44元,轻量应用服务器4核8G12M带宽一年446元、529元15个月,腾讯云…

malloc、calloc、realloc、free函数的使用及注意事项

malloc函数 malloc函数的返回值为void*类型 内存管理函数操作的内存是在堆区空间 malloc函数使用示例 free(p)相当于值传递,不能改变p本身。 free只是释放了空间,释放后p依然指向原地址,故需要手动置NULL。 calloc函数 calloc可以指定开辟n个…

【Week-P3】CNN天气识别

文章目录 一、环境配置二、准备数据三、搭建网络结构四、开始训练五、查看训练结果六、总结6.1 不改变学习率的前提下,将训练epoch分别增加到50、60、70、80、90(1)epoch 50 的训练情况如下:(2)epoch 60 …

UE4运用C++和框架开发坦克大战教程笔记(十二)(第37~39集)

UE4运用C和框架开发坦克大战教程笔记(十二)(第37~39集) 37. 延时事件系统38. 协程逻辑优化更新39. 普通按键绑定 37. 延时事件系统 由于梁迪老师是写 Unity 游戏出身的,所以即便 UE4 有自带的 TimeManager 这样的延时…

直方图与均衡化

直方图 统计图像中相同像素点的数量。 使用cv2.calcHist(images, channels, mask, histSize, ranges)函数 images:原图像图像格式为uint8或float32,当传入函数时应用[]括起来,例如[img]。 channels:同样用中括号括起来&#xff…

pytest pytest-html优化样式

conftest.py import pytest from pytest_metadata.plugin import metadata_keydef pytest_html_report_title(report):report.title"接口测试报告"def pytest_configure(config):# 获取命令行参数中的测试环境、测试版本、开始时间、测试人员config.stash[metadata_…

鸿蒙Harmony(七)ArkUI--循环foreachList组件自定义组件

循环foreach import Prompt from system.promptclass Item {icon: Resourcename: stringprice: numberconstructor(icon: Resource, name: string, price: number) {this.icon iconthis.name namethis.price price} }Entry Component struct Index {State message: string …

Linux 安装Jupyter notebook 并开启远程访问

文章目录 安装Python安装pip安装Jupyter启动Jupyter Notebook1. 生成配置文件2. 创建密码3. 修改jupyter notebook的配置文件4. 启动jupyter notebook5. 远程访问jupyter notebook 安装Python 确保你的系统上已经安装了Python。大多数Linux发行版都预装了Python。你可以在终端…

flutter 之proto

和嵌入式用proto协议来通信,以mac来演示 先在电脑上安装protobuf(在博主文章内容里面搜Mac安装protobuf),然后在桌面上放这几个文件,且build_proto_dart.sh文件内容如图所示 #!/bin/bashSCRIPT$(readlink -f "$0…

NFC物联网智能学生宿舍系统设计方案

随着物联网技术的不断发展,智慧城市、智能家居、智慧校园的建设也在如火如茶地进行。本文结合物联网发展过程中相关的技术,应用到智慧校园的建设过程中,将学生宿舍打造成舒适、安全的集体空间,该系统可以对学生宿舍实现智能开门、…

Python爬虫教程30:Selenium网页元素,定位的8种方法!

Selenium可以驱动浏览器,完成各种网页浏览器的模拟操作,比如模拟点击等。要想操作一个元素,首先应该识别这个元素。人有各种的特征(属性),我们可以通过其特征找到人,如通过身份证号、姓名、家庭…

云短信平台优惠活动 - 华为OD统一考试

OD统一考试 题解: Java / Python / C++ 题目描述 某云短信厂商,为庆祝国庆,推出充值优惠活动。 现在给出客户预算,和优惠售价序列,求最多可获得的短信总条数。 输入描述 第一行客户预算M,其中 0<=M<=100 第二行给出售价表,P1,P2,… Pn, 其中 1<=n<=100…