基于MATLAB的泊松分布,正态分布与伽玛分布(附完整代码与例题)

news2025/1/21 7:10:24

目录

一. 泊松分布

1.1 理论部分

1.2 MATLAB函数模型

1.3 例题

二. 正态分布

2.1 理论部分

2.2 MATLAB函数模型

2.3 例题

三. 伽玛分布

3.1 理论部分

3.2 MATLAB函数模型

3.3 例题


一. 泊松分布

1.1 理论部分

Poisson分布是离散的,其x值只能取自然数。Poisson分布的概率密度函数如下:

P(x)=\frac{\lambda^x}{x!}e^{-\lambda x},\quad x=0,1,2,3,\cdots

其中\lambda是一个固定的正整数常数。在泊松分布中,参数λ是单位时间(或单位面积)内随机事件的平均发生率。 泊松分布适合于描述单位时间内随机事件发生的次数。以下情况可以构建泊松分布模型:

  • 某一服务设施在一定时间内到达的人数
  • 电话交换机接到呼叫的次数
  • 汽车站台的候客人数
  • 机器出现的故障数
  • 自然灾害发生的次数

1.2 MATLAB函数模型

泊松分布的概率密度函数,在MATLAB中可以直接调用:

y=poisspdf(x,lambda);

%给定x与lambda的值,就可以直接求该点的概率密度值

分布函数(累积概率函数),在MATLAB中可以直接调用:

F=poisscdf(x,lambda)

如果给定分布函数值,反过来求x,则需要调用逆概率分布函数:

x=poissinv(F,lambda)

MATLAB本身非常适合用来处理向量和矩阵,所以,如果输入的x为一个向量的话,那么输出的y则是x各个点处的概率密度函数值。

1.3 例题

绘制\lambda=1,2,5,10时,泊松分布的概率密度函数与概率分布函数曲线图。

MATLAB代码:

x=[0:15]'; 
%x为0~15之间的整数,注意需要通过'转为列向量
y1=[]; y2=[]; 
%要画两个图像
lam1=[1,2,5,10];
%lambda确定了,泊松分布就确定了
for i=1:length(lam1) %lam1的长度为4
    y1=[y1,poisspdf(x,lam1(i))]; %lam1(i)代表调用集合lam1中的第i个元素
    y2=[y2,poisscdf(x,lam1(i))];
end
plot(x,y1), figure; %figure命令可让其画两个图
plot(x,y2)

注意题目要求是画曲线,所以需要将这些点连起来。

泊松概率密度函数图:

泊松分布的概率分布函数图:

二. 正态分布

2.1 理论部分

正态分布的概率密度函数如下:

p(x)=\frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}

其中\mu代表均值,\sigma^2代表方差。

2.2 MATLAB函数模型

正态分布的概率密度函数,在MATLAB中可以直接调用:

y=normpdf(x,mu,sigma);

%给定x,mu,sigma的值,就可以直接求该点的概率密度值
%注意函数调用格式中的sigma使用的是标准差

分布函数(累积概率函数),在MATLAB中可以直接调用:

F=normcdf(x,mu,sigma);

如果给定分布函数值,反过来求x,则需要调用逆概率分布函数:

x=norminv(F,mu,sigma);

2.3 例题

分别绘制出(\mu,\sigma^2)为(-1,1),(0,0.1),(0,1),(0,10),(1,1)时,正态分布的概率密度函数与分布函数曲线。

MATLAB代码:

x=[-5:.02:5]'; 
y1=[]; 
y2=[];
mu1=[-1,0,0,0,1]; 
sig1=[1,0.1,1,10,1]; sig1=sqrt(sig1); %注意函数调用的是标准差
for i=1:length(mu1)   %length(mu1)=5    
    y1=[y1,normpdf(x,mu1(i),sig1(i))];
    y2=[y2,normcdf(x,mu1(i),sig1(i))];  
end
plot(x,y1), figure; 
plot(x,y2)

正态分布的概率密度函数图:

根据对称轴的值,也就是均值的大小可以对应曲线代表的正态分布。方差越大,曲线越胖。

分布函数曲线图:

函数严格单调递增。

三. 伽玛分布

3.1 理论部分

观察相邻两个事件之间时间间隔的分布情况,或者隔k个事件的时间间隔的分布情况。根据概率论,事件之间的时间间隔应符合伽玛分布,由于时间间隔可以是任意数值,因此伽玛分布是一种连续概率分布。又因为时间间隔不可能为负数,所以伽玛分布的x需要非负。

伽玛分布有的时候也会写做\Gamma分布,其概率密度函数为:

P_\Gamma(x)=\begin{cases} \frac{\lambda^ax^{a-1}}{\Gamma(a)},\quad &x\geq 0 \\ 0,\quad &x<0 \end{cases}

伽玛分布需要提前确定两个参数:a与\lambda.

上个式子中:

\Gamma(a)=\int_0^\infty x^{a-1}e^{-x}dx

在MATLAB可以调用积分函数来计算该值,也可以直接调用gamma()函数来计算,两种途径都可以。

该积分属于指数积分类型,有三个常用的结论:

\Gamma(a)=a\Gamma(a-1)

\Gamma(1)=1

\Gamma(\frac{1}{2})=\pi

3.2 MATLAB函数模型

与泊松分布和正态分布类似,此处也有对应的三个函数,就不过多啰嗦了:

%概率密度函数
y=gampdf(x,a,lambda)

%概率分布函数
F=gamcdf(x,a,lambda)

%逆概率分布函数
x=gaminv(F,a,lambda)

3.3 例题

绘制(a,\lambda)为(1,1),(1,0.5),(2,1),(1,2),(3,1)时伽玛分布的概率密度函数与分布函数曲线。

MATLAB代码:

x=[-0.5:.02:5]';   %图像x轴取值范围
y1=[]; y2=[]; 
a1=[1,1,2,1,3]; 
lam1=[1,0.5,1,2,1];
for i=1:length(a1)
    y1=[y1,gampdf(x,a1(i),lam1(i))]; 
    y2=[y2,gamcdf(x,a1(i),lam1(i))];
end
plot(x,y1), figure; plot(x,y2)

概率密度函数曲线:

伽马函数的图像趋势一般是先上升后下降。

分布函数曲线:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1339624.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

uniapp Vue3 面包屑导航 带动态样式

上干货 <template><view class"bei"><view class"container"><view class"indicator"></view><!-- 遍历路由列表 --><view v-for"(item, index) in routes" :key"index" :class&quo…

卷积神经网络 反向传播

误差的计算 softmax 经过softmax处理后所有输出节点概率和为1 损失&#xff08;激活函数&#xff09; 多分类问题&#xff1a;输出只可能归于某一个类别&#xff0c;不可能同时归于多个类别。 误差的反向传播 求w的误差梯度 权值的更新 首先是更新输出层和隐藏层之间的权重…

RustDesk连接客户端提示key不匹配 Key Mismatch无法连接(已解决)

环境: RustDesk1.1.9 服务端docker部署 问题描述: RustDesk连接客户端提示key不匹配 Key Mismatch无法连接 解决方案: 1.docker部署RustDesk服务检查配置 networks:rustdesk-net:external: falsevolumes:hbbr:hbbs:services:hbbs:container_name: rustdesk-hbbsport…

webstrom 快速创建typescript 语法检测的Vue3项目

webstrom 快速创建typescript 语法检测的Vue3项目 若您想为您的Vue 3项目添加TypeScript支持&#xff0c;您需要进行以下步骤&#xff1a; 安装 typescript 和 vitejs/plugin-vue 作为开发依赖项&#xff1a; npm install --save-dev typescript vitejs/plugin-vue创建一个…

Cucumber-JVM的示例和运行解析

Cucumber-JVM 是一个支持 Behavior-Driven Development (BDD) 的 Java 框架。在 BDD 中&#xff0c;可以编写可读的描述来表达软件功能的行为&#xff0c;而这些描述也可以作为自动化测试。 Cucumber-JVM 的最小化环境 Cucumber-JVM是BDD的框架&#xff0c; 提供了GWT语法的相…

andriod安卓水果商城系统课设

​ 一、目的及任务要求 随着当今社会经济的快速发展和网络的迅速普及&#xff0c;手机基本成为了每个人都随身携带的电子产品。传统的购物方式已经满足不了现代人日益追求便利及高效率的购物心理&#xff0c;而通过移动手机上的在线购物系统&#xff0c;可以便捷地甚至足不出…

Vue 自定义ip地址输入组件

实现效果&#xff1a; 组件代码 <template><div class"ip-input flex flex-space-between flex-center-cz"><input type"text" v-model"value1" maxlength"3" ref"ip1" :placeholder"placeholder"…

Win10 + 4090显卡配置深度学习环境 + gaussian-splatting配置 + 实测自己的场景

目录 1 安装Anaconda 2023.09版本 2 安装CUDA11.8 3 安装深度学习库Cudnn8.6.0 4 安装VSCODE2019 5 安装Colmap3.8 6 安装git 7 安装Python3.10 Pytorch2.0.0 7 安装项目 8 采集数据 8.1 IPhone 14 pro 拍摄30张照片左右 做预处理 8.2 生成colmap位姿等信息 8.3 开…

starrocks集群fe/be节点进程守护脚本

自建starrocks集群&#xff0c;有时候服务会挂掉&#xff0c;无法自动拉起服务&#xff0c;于是采用supervisor进行进程守护。可能是版本的原因&#xff0c;supervisor程序总是异常&#xff0c;无法对fe//be进行守护。于是写了个简易脚本。 #!/bin/bash AppNameFecom.starrock…

Xshell连接ubuntu,从github克隆项目,用Xshell克隆项目

访问不了github&#xff1a;https://blog.csdn.net/liu834189447/article/details/135246914 短暂解决访问问题。 ping不通虚拟机/无法连接虚拟机&#xff1a;https://blog.csdn.net/liu834189447/article/details/135240276 ps: Xshell、ubuntu的粘贴快捷键为 Shift Insert …

日志框架简介-Slf4j+Logback入门实践 | 京东云技术团队

前言 随着互联网和大数据的迅猛发展&#xff0c;分布式日志系统和日志分析系统已广泛应用&#xff0c;几乎所有应用程序都使用各种日志框架记录程序运行信息。因此&#xff0c;作为工程师&#xff0c;了解主流的日志记录框架非常重要。虽然应用程序的运行结果不受日志的有无影…

Android : 画布绘制矩形和文字 让其居中显示简单应用

示例图&#xff1a; CenterView.java package com.example.demo;import android.content.Context; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.Paint; import android.util.Log; import android.view.View;public class Center…

c语言用四种方式求解成绩之中最高分和最低分的差值

文章目录 一&#xff0c;题目二&#xff0c;方法1&#xff0c;方法一2&#xff0c;方法二3&#xff0c;方法三4&#xff0c;方法四 三&#xff0c;示例结果 一&#xff0c;题目 最高分最低分之差 输入n个成绩&#xff0c;换行输出n个成绩中最高分数和最低分数的差 输入 : 两行…

利用网络教育系统构建个性化学习平台

在现代教育中&#xff0c;网络教育系统作为一种创新的学习方式&#xff0c;为学生提供了更加个性化和灵活的学习体验。在本文中&#xff0c;我们将通过简单的技术代码&#xff0c;演示如何构建一个基础的网络教育系统&#xff0c;为学生提供个性化的学习路径和资源。 1. 环境…

Undo Log 、Binary Log、Redo Log之间到底有什么区别?

Undo Log 、Binary Log、Redo Log各自的作用 先抛结论&#xff1a;他们各自的作用是什么 Undo Log &#xff1a;用于保证数据库事务原子性Binary Log&#xff1a;用于数据库的数据备份/主从复制Redo Log&#xff1a;用于保证数据库事务持久性 接下来详细谈谈它们 Undo Log …

关于Java并发、JVM面试题

前言 之前为了准备面试&#xff0c;收集整理了一些面试题。 本篇文章更新时间2023年12月27日。 最新的内容可以看我的原文&#xff1a;https://www.yuque.com/wfzx/ninzck/cbf0cxkrr6s1kniv 并发 进程与线程的区别 线程属于进程&#xff0c;进程可以拥有多个线程。进程独享…

【项目】玩具租赁博客测试报告

目录 一、项目背景 二、项目功能 三、功能测试 一、项目背景 玩具租赁系统采用前后端分离的方法来实现&#xff0c;同时使用了数据库来存储相关的数据&#xff0c;同时将其部署到云服务器上。前端主要有十五个页面构成&#xff1a;用户注册、管理员注册、登录页、用户和管理…

java浅拷贝BeanUtils.copyProperties引发的RPC异常 | 京东物流技术团队

背景 近期参与了一个攻坚项目&#xff0c;前期因为其他流程原因&#xff0c;测试时间已经耽搁了好几天了&#xff0c;本以为已经解决了卡点&#xff0c;后续流程应该顺顺利利的&#xff0c;没想到 人在地铁上&#xff0c;bug从咚咚来~ 没有任何修改的服务接口&#xff0c;抛出…

IT安全:实时网络安全监控

了解庞大而复杂的网络环境并非易事&#xff0c;它需要持续观察、深入分析&#xff0c;并对任何违规行为做出快速反应。这就是为什么实时网络安全监控工具是任何组织 IT 安全战略的一个重要方面。 网络攻击和合规性法规是 IT 安全的两个主要驱动因素。同时&#xff0c;数据泄露…

Spring Cloud Gateway 常见过滤器的基本使用

目录 1. 过滤器的作用 2. Spring Cloud Gateway 过滤器的类型 2.1 内置过滤器 2.1.1 AddResponseHeader 2.1.2 AddRequestHeader 2.1.3 PrefixPath 2.1.4 RequestRateLimiter 2.1.5 Retry 2.2 自定义过滤器 1. 过滤器的作用 过滤器通常用于拦截、处理或修改数据流和事…